
Actisense Comms SDK

User Manual

Issue 1.07 (November 2010)
For use with NGT-1 firmware v2.180 (and above)
and ActisenseComms dll v1.1.2.0 (and above)

 Creates a simple and easy to use communications interface to any Actisense
Comms API compatible product

	 Multi-threaded buffered bidirectional interface for reliable communications

	 Converts from the Actisense proprietary message format (BST) in to an easy
to read and use structure interface

	 Enables fast integration of an Actisense product interface into a users
software product

Actisense Comms SDK

Page 3© 2010 Active Research Limited

Contents
Important Notices	 6
Foreword	 6
Introduction	 6
General features	 6

C-code function interface	 6
Multi-threaded bi-directional interface	 6
Converts from the Actisense proprietary message format (BST)	 6
Example programs showing usage	 6

API modules	 7
API_AComms	 7

ACommsCreate 	 7
ACommsDestroy 	 7
ACommsDestroyAll	 7
ACommsOpen 	 8
ACommsClose	 8
ACommsGetPortNumber	 8
ACommsGetPortBaudrate	 8
ACommsEnumerateSerialPorts	 8
ACommsEnumerateSerialPortsGetName	 9
ACommsGetRxLoading	 9
ACommsGetTxLoading	 9

API_BST	 10
ACommsBST_Write 	 10
ACommsBST_Read	 10
ACommsBST_GetRxQSize	 10
ACommsBST_FlushRx	 10
ACommsBST_FlushTx	 10
ACommsBST_SetRxCallback	 10

API_Command	 11
ACommsCommand_GetStream	 11
ACommsCommand_SetStream	 12
ACommsCommand_GetN2KAddress	 12
ACommsCommand_SetN2KAddress	 12
ACommsCommand_Reboot 	 13
ACommsCommand_ReInitMainApp	 13
ACommsCommand_CommitToEEPROM	 13
ACommsCommand_CommitToFlash	 13
ACommsCommand_GetHardwareInfo	 14
ACommsCommand_GetOperatingMode	 14
ACommsCommand_SetOperatingMode	 14
ACommsCommand_GetHardwareBaudCodes	 15
ACommsCommand_SetHardwareBaudCodes 	 15
ACommsCommand_GetPortBaudCodes 	 16
ACommsCommand_SetPortBaudCodes 	 16
ACommsCommand_GetPortPCodes 	 17

 Actisense®

Page 4© 2010 Active Research Limited

ACommsCommand_SetPortPCodes	 17
ACommsCommand_GetPortDupDelete 	 18
ACommsCommand_SetPortDupDelete	 18
ACommsCommand_GetTotalTime	 18
ACommsCommand_SetTotalTime	 19
ACommsCommand_GetProductInfoN2K	 19
ACommsCommand_GetCanConfig	 19
ACommsCommand_SetCanConfig	 19
ACommsCommand_SetCanInfoField1	 20
ACommsCommand_SetCanInfoField2	 20
ACommsCommand_SetCanInfoField3	 20
ACommsCommand_GetCanInfoField1	 20
ACommsCommand_GetCanInfoField2	 20
ACommsCommand_GetCanInfoField3	 20
ACommsCommand_SetRxPGN	 20
ACommsCommand_SetRxPGNEx	 21
ACommsCommand_GetRxPGN	 21
ACommsCommand_SetTxPGN	 21
ACommsCommand_SetTxPGNEx	 21
ACommsCommand_GetTxPGN	 22
ACommsCommand_GetRxPGNList	 22
ACommsCommand_GetTxPGNList	 22
ACommsCommand_ClearPGNList	 22
ACommsCommand_ClearRxPGNList	 22
ACommsCommand_ClearTxPGNList	 22
ACommsCommand_ActivatePGNEnableLists	 23
ACommsCommand_SetDefaultPGNEnableList	 23
ACommsCommand_GetParamsPGNEnableLists	 24

API_CommsLog	 25
ACommsLog_Enable	 25

API_Decode	 26
ACommsDecode_GetAge	 26
ACommsDecode_GetDataTypeName	 26
ACommsDecode_GetUARTBaudCodeName	 26
ACommsDecode_GetCANBaudCodeName	 27
ACommsDecode_GetModelIDName	 27
ACommsDecode_SetCallback	 27
ACommsDecode_SetCallbackGroup	 28
ACommsDecode_GetTag	 28
ACommsDecode_GetHardwareInfo	 29
ACommsDecode_GetOperatingMode	 29
ACommsDecode_GetHardwareBaudCodes	 29
ACommsDecode_GetPortBaudCodes	 29
ACommsDecode_GetPortPCodes	 30
ACommsDecode_GetPortDupDelete	 30
ACommsDecode_GetTotalTime	 30
ACommsDecode_GetProductInfoN2K	 30
ACommsDecode_GetCanConfig	 31

Actisense Comms SDK

Page 5© 2010 Active Research Limited

ACommsDecode_GetCanInfoField1-3	 31
ACommsDecode_GetRxPGN	 31
ACommsDecode_GetTxPGN	 31
ACommsDecode_GetRxPGNList	 32
ACommsDecode_GetTxPGNList	 32
ACommsDecode_GetParamsPGNEnableLists	 32
ACommsDecode_GetStartupStatus	 33
ACommsDecode_GetSystemStatus	 33
ACommsDecode_GetDbgTimeProfiler	 33

API_NMEA0183	 34
ACommsN183_Write	 34
ACommsN183_Read	 34
ACommsN183_FlushRx	 35
ACommsN183_FlushTx	 35
ACommsN183_SetRxCallback	 35

API_NMEA2000	 36
ACommsN2K_Write	 36
ACommsN2K_Read	 36
ACommsN2K_GetRxQSize	 36
ACommsN2K_FlushRx	 37
ACommsN2K_FlushTx	 37
ACommsN2K_SetRxCallback	 37

Using the Actisense API	 38
Initialise for each use	 38
Rx PGN Enable list	 39
Tx PGN timings	 40
API & Device Error Codes	 40
Reset/Re-initialisation sources	 40
Application thread restrictions	 41
Application-API thread efficiency	 41
Automatically detecting an installed Actisense device’s port	 41
‘Receive All Transfer’ Operating Mode	 41
Proprietary ‘P-code’ messages	 41
Setting up Callbacks	 42
Changing the device’s baud rate	 43
API source code (C, C++, C#)?	 43
ActisenseComms dll C# ‘wrapper’ 	 43
NMEA 2000 PGN options	 44
NMEA 2000 certification	 44
‘Intelligent Gateway’ and	 44
‘Third Party Gateway’ (TPG)	 44
NMEA 2000 Address Claiming	 44
Converting NMEA 2000 to NMEA 0183	 44
Full (2500 volts) galvanic isolation	 44
Cost effective interface	 44

Company Information	 48

 Actisense®

Page 6© 2010 Active Research Limited

Important Notices
When using this document, keep the following in mind:

The products described in this manual and the
specifications thereof may be changed without prior
notice. To obtain up-to-date information and/or
specifications, contact Active Research Limited or visit the
Actisense website (www.actisense.com).

Active Research Limited will not be liable for infringement
of copyright, industrial property right, or other rights of a
third party caused by the use of information or drawings
described in this manual.

All rights are reserved: The contents of this manual may
not be transferred or copied without the expressed written
permission of Active Research Limited.

Active Research Limited will not be held responsible for
any damage to the user that may result from accidents
or any other reasons during operation of the user’s unit
according to this document.

Foreword
Actisense recognises that instructions are often skipped,
so we have aimed to write this document in an informative,
yet direct manner that will aid the user. We have tried to
cover all the points a typical user may need to know.

Please read all sections before using the Actisense
Comms SDK in a Higher Level Application (HLA) and any
related hardware products. Actisense will be better placed
to help support the user who has a good understanding
of this document as a whole.

Introduction
The Actisense Comms SDK has been developed to help
simplify the integration of compatible Actisense products
into a users software environment.

This SDK documentation, the Visual C++ example
programs and the C# wrapper code should allow a
software programmer to implement a communications
link to a compatible Actisense product in a very short
period of time.

The current list of Actisense products that are compatible
with the Actisense Comms SDK are:

• NGT - NMEA 2000 PC Interface Gateway
• NGW - NMEA 2000 to NMEA 0183 Gateway

Full information on the complete Actisense product
range can be found on the Actisense website.

“Actisense” is a registered trademark of Active
Research Limited (ARL).

General features
C-code function interface
All access functions required to send data to and receive
data from the Actisense hardware product use a flexible
C-code interface using __stdcall to maximise compatibility
with the users software design compiler environment.

Multi-threaded bi-directional interface
The Actisense Comms API uses a very efficient multi-
threaded bi-directional interface to minimise CPU usage
requirements. Full buffering of data ensures secure
communications even under very high data loads.

Converts from the Actisense proprietary
message format (BST)
Allows the Actisense proprietary message format (BST) to
be hidden from the users software, and instead offers up
a simple structure interface that is easy to read and use.

Example programs showing usage
The included example programs in the SDK show real
world usage of the Actisense Comms DLL and help to
explain how the c-code function interface should be used
to get the most out of it.

http://www.actisense.com
http://www.actisense.com

Actisense Comms SDK

Page 7© 2010 Active Research Limited

API modules
This section details the access functions that can be
found in each module, their intended usage and any extra
information that may help the software developer.

All standard API functions are of the following form:

int <ACommsFunctionName>(int Handle, ...)

1) All take an integer Handle as their first argument, this
is the handle returned by the ACommsCreate function
allowing these functions to access the required Actisense
Comms resource pointed to by that handle.

2) All return an integer Error code. This error code should
be zero (ES_NO_ERROR) if no error has occurred. If an
error been detected by the API, the negative error code
returned is defined in the “ARLErrorCodes” header file.

It is important to understand that any error code returned
immediately by an API command function can only
indicate an error that is detectable by the API when it
decodes the HLA’s request parameters. The return of the
ES_NO_ERROR code, should in no way be understood
by the HLA as the API command having been successfully
received and handled by the attached hardware device.
No API-Hardware communication will have occurred at
the time the API function returns it’s error code value.

The attached hardware that the API is communicating with
will return its own error code value when it acknowledges
the requested API command. The HLA should decode
this acknowledgement message to correctly understand
the outcome of its request and therefore know what action
it should do next.

API_AComms
This is the core interface module of the Actisense Comms
library. It is the only header required to be added to
any module that uses the Actisense Comms API - as it
includes / brings in all the other API headers.

The functions contained in this module form the lowest
level Actisense Comms object access functions and can
allow creation of multiple handles to multiple Comms
ports. In the future, this will be extended beyond serial
ports to other transport media.

All the communications functions in this API allow access
to the underlying communications objects. The library
handles all the real time receiving and sending of data to
all Comms resources that have been created and opened.

All AComms functions are [INTERNAL] to the PC
and do not generate any external communication
messages to the attached ARL device.

ACommsCreate
Before using an Actisense Comms object, a handle must
be obtained to a Comms resource using this function:

int ACommsCreate (int * pHandle)

Creates a new “Actisense Comms” resource, and returns
a handle (via the passed in pointer reference) to allow any
external API functions to access this resource through the
API function set. The returned integer value indicates the
error status (as detailed in the API modules section).

Valid Comms object handles created by the library will be
positive 32-bit integers in the range of 1 - 0x7FFFFFFF.

If a handle could not be created, the returned handle will
be set to ACOMMS_INVALID_HANDLE (zero) and one of
these ARL error codes will be returned from the function:

ES11_INVALID_HANDLE
Unable to reserve resources for this handle. This is
an internal Windows error

ES11_TOO_MANY_HANDLES
Maximum number of handles has been exceeded

ACommsDestroy
To destroy a Comms object no longer required, removing
it from the system, use this function:

int ACommsDestroy (int Handle)

Destroys an “Actisense Comms” resource referred to by
the supplied handle, to free up all memory and resources
used by the given handle. Can be used to selectively
remove a single Comms object’s resources.

If an error occurs, this ARL error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsDestroyAll
To remove resources from all currently active Actisense
Comms objects with one call, use this function:

int ACommsDestroyAll (void)

Destroys all “Actisense Comms” resources that are
currently active, and frees up all memory and resources
used by them. This function should be called as part of
the clean up routine when the application is terminated.

If an error is detected, a negative ARL error code will be
returned (refer to ARLErrorCodes header).

 Actisense®

Page 8© 2010 Active Research Limited

ACommsOpen
To open a Comms resource (previously created) for use
by the Actisense Comms object, use this function:

int ACommsOpen (int Handle, int PortNumber,
 int Baudrate)

After a Comms resource has been created, a Comms port
may be opened for this resource. This function opens a
serial UART Comms stream for this handle.

The required system “COM” port number and Baud rate
are supplied by the calling function. If the given handle
has been perviously used by the API to open a Comms
port, the open port will be automatically closed prior to
being reopened with the new parameters.

If an error is detected during this operation, one of these
ARL error codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_PORT_NUMBER_OUT_OF_RANGE
Only port numbers from 1 to 250 are valid

ES11_COMMS_CANNOT_CLOSE
Handle is already in use, and failed to close the port
prior to being reopened with the new parameters

ES11_PORT_NUMBER_CANNOT_OPEN
A Windows handle was not given for this resource
(normally because port does not exist)

ES11_COMMS_CANNOT_GET_DCB
An internal Windows error

ES11_COMMS_CANNOT_SET_DCB
An internal Windows error

ES11_COMMS_CANNOT_SET_TIMEOUTS
An internal Windows error

ACommsClose
To close a Comms resource that has been previously
created and opened, use this function:

int ACommsClose (int Handle)

Closes the Comms port associated with the given handle.
The Comms object is not destroyed, so this port can be
reopened whenever required in the future.

If an error is detected, one of these ARL error codes will
be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMS_CANNOT_CLOSE
An internal Windows error

ACommsGetPortNumber
To obtain the Comms port number associated with a
particular Comms object handle, use this function:

int ACommsGetPortNumber (int Handle,
 int *PortNumber)

Returns the physical / hardware number of the Comms
port associated with the given Comms object handle.

If an error occurs, this ARL error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsGetPortBaudrate
To obtain the Comms Baud rate associated with a
particular Comms object handle, use this function:

int ACommsGetPortBaudrate (int Handle, int *Baudrate)

Returns the physical / hardware baud rate of the Comms
port associated with the given Comms object handle.

If an error occurs, this ARL error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsEnumerateSerialPorts
To obtain a list of all Enumerated Comms ports currently
available to the system, use this function:

int ACommsEnumerateSerialPorts
 (sPortEnum *PortEnum)

The user defined structure that is passed by reference
will be filled with the active enumerated ports list currently
available to the system.

On some PC installations that have a large number of
virtual serial ports installed, this API function may take
a noticeable amount of time to return. Under these
exceptional conditions, it is recommended that the HLA
find an alternative method of enumerating serial ports.

If an error occurs, this ARL error code will be returned:

ES11_PORT_ENUMERATOR_ERROR
An internal Windows error

Actisense Comms SDK

Page 9© 2010 Active Research Limited

ACommsEnumerateSerialPortsGetName
To convert an Enumerated Comms port number in to a
more user friendly text description, use this function:

char* ACommsEnumerateSerialPortsGetName
 (u32 PortNum)

As a companion / helper function to the Comms port
Enumeration function (above), this takes the given
enumerated port number and returns the ‘description’
text name associated with that port - which can be very
helpful to the user to identify the correct Comms port.

As this is a helper function that cannot fail, it differs from
the normal error return function format.

The local function string storage will only persist (without
change) until this function called again, so the returned
pointer cannot be used for a permanent reference.
Instead, the calling function should copy this string as
soon as the function returns the reference to it.

Note: Not all Comm ports have ‘useful’ description names
registered to them - in these rare cases, a Null string will
be returned by this function.

ACommsGetRxLoading
To obtain the Comm port’s current Receive Loading factor
associated with a particular Comms object handle, use
this function:

int ACommsGetRxLoading (int Handle, int *pLoading)

Returns a percentage factor that indicates how much load
the Comm port’s receive channel, associated with the
given Comms object handle, is currently experiencing.

The returned integer load factor has a resolution of 3
decimal places and must be divided by 1000 to get the
true floating number.

A load factor of 100% indicates that the maximum possible
number of bytes (set by the Comm port’s baud rate) have
been received in the last second.

If an error occurs, this ARL error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsGetTxLoading
To obtain the Comm port’s current Transmit Loading
factor associated with a particular Comms object handle,
use this function:

int ACommsGetTxLoading (int Handle, int *pLoading)

Returns a percentage factor that indicates how much load
the Comm port’s transmit channel, associated with the
given Comms object handle, is currently experiencing.

The returned integer load factor has a resolution of 3
decimal places and must be divided by 1000 to get the
true floating number.

A load factor of 100% indicates that the maximum possible
number of bytes (set by the Comm port’s baud rate) have
been transmitted in the last second.

If an error occurs, this ARL error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

 Actisense®

Page 10© 2010 Active Research Limited

API_BST
This module forms the low-level BST Protocol interface
of the Actisense Comms library. Direct access to the
functions in this module is not normally required by the
Higher Level Application (HLA) written by the software
developer.

Most developers can skip this section: the BST Protocol
definition is not available for external use, so the contents
of any messages read will be meaningless.

The normal procedure for gaining access to the data
contained within BST messages is by setting up the
associated callback functions for each message type so
the data can be returned in easy to access structures.

All API_BST functions (except for the ‘Write’) are
[INTERNAL] to the PC and do not generate any
external communication messages to the attached
ARL device.

ACommsBST_Write
To send (write) a raw BST message to the BST transmit
queue of the given Comms port handle, use this function:

int ACommsBST_Write (int Handle, sBSTMsg *msg)

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_BUFFER_OVERFLOW
Given handle’s queue is full - write operation had to
remove the oldest queued message first

ACommsBST_Read
To get (read) the next raw BST message from the BST
receive queue of the given Comms port handle, use this
function:

int ACommsBST_Read (int Handle, sBSTMsg *msg)

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_BUFFER_UNDERFLOW
Given handle’s queue is empty - read operation has
failed to find a message

ACommsBST_GetRxQSize
To get the total number of BST messages (still to be read)
that are waiting in the BST receive queue of the given
Comms port handle, use this function

int ACommsBST_GetRxQSize (int Handle,
 size_t *BufferSize)

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsBST_FlushRx
To empty (flush) all unread messages from the BST
receive queue of the given Comms port handle, use this
function:

int ACommsBST_FlushRx (int Handle);

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsBST_FlushTx
To empty (flush) all unsent messages from the BST
transmit queue of the given Comms port handle, use this
function:

int ACommsBST_FlushTx (int Handle);

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsBST_SetRxCallback
To setup a BST receive message type Callback function
for the given Comms port handle, use this function:

int ACommsBST_SetRxCallback (int Handle,
 void (*pFunc)(void*), void*p)

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

Actisense Comms SDK

Page 11© 2010 Active Research Limited

API_Command
This is the main operating module that handles the
sending of commands and the receiving of responses
from the Actisense hardware product.

Each command can have a callback function setup that
will be actioned when the target device responds with
its acknowledgement to the issued API command. The
callback method is the simplest way to complete the
‘send command, get the acknowledgement’ sequence.
For full details, refer to section Setting up Callbacks.

Some commands use the full acknowledgement format of
’Tag’ and ‘Data’ sections, whilst the simpler ones contain
the reduced format of ‘Tag’ section only.

For each command that has a defined acknowledgment,
the required ‘Decode’ function to call from within the
message callback handler and the required ‘DataType’ it
uses is defined thus:

Decode : <Decode function to call>
DataType : <Decoded data type>

If an error is detected by the API in any of the Command
functions detailed below, an ARL error codes will be
returned by the API. The list of error codes common to all
functions are:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_DECODE_NO_DEFINITION
Command undefined. Please contact Actisense

ES11_COMMAND_MESSAGE_UNINITIALISED
Command uninitialised. Please contact Actisense

ES13_BUFFER_OVERRUN
Encapsulate buffer overrun. Please contact Actisense

All API_Command functions (except for ‘GetStream’,
‘SetStream’, ‘GetN2KAddress’ and ‘SetN2KAddress’)
are EXTERNAL to the PC and do communicate
externally with the attached ARL device. Depending
on the current ‘SetStream’, these are either [LOCAL]
or [REMOTE] EXTERNAL messages.

ACommsCommand_GetStream
To retreive the current Command ‘Stream’ that is set in the
DLL, use this function:

int ACommsCommand_GetStream (int Handle,
 stream_t *Stream)

The ‘stream_t’ enumerator defines all the possible
streams that API commands can be sent over. Refer to
ACommsCommand_SetStream for full enum definitions.

The returned value could for example be kept hidden
from the basic user (to keep it simple), and reflected on
to the GUI for the advanced user (so they know where the
commands are currently being sent).

All API detectable errors are part of the common error list
detailed at the beginning of this section.

 Actisense®

Page 12© 2010 Active Research Limited

ACommsCommand_SetStream
To change the current Command ‘Stream’ to the required
stream, use this function:

int ACommsCommand_SetStream (int Handle,
 stream_t Stream)

The ‘stream_t’ enumerator defines all the possible streams
that API commands can be sent over:

COMMANDSTREAM_BST
Command is sent in Actisense proprietary BST format
over the local serial link. Use with Actisense BST
interfaced devices connected to the local serial port
e.g. NGT

COMMANDSTREAM_NMEA0183
Command is wrapped as a proprietary NMEA 0183
string formatted as Actisense $PARL and sent over
the local serial link. Use with Actisense NMEA 0183
interfaced devices connected to the local serial port
e.g. NGW

COMMANDSTREAM_NMEA2000
Command is wrapped as a proprietary NMEA 2000
message and sent to the target device whose address
can be set using the function ACommsCommand_
SetN2KAddress. Used for the targeting of remote
Actisense devices over the NMEA 2000 network (via
a local NGT device).

Sets the command ‘stream’ over which any subsequent
commands will be sent to the value given (as long as it is
a valid stream_t value).

When talking to a local NGT device, the stream must be
left set to COMMANDSTREAM_BST - otherwise all local
NGT communication will be lost.

If the requested stream is invalid, this ARL error code will
be returned:

ES11_COMMAND_INVALID_STREAM
Command stream is invalid and has been ignored

ACommsCommand_GetN2KAddress
To retrieve the currently set target address that will be
used to send remote commands on the NMEA 2000 bus,
use this function:

int ACommsCommand_GetN2KAddress (int Handle,
 u8 *N2KAddress)

Returns the NMEA 2000 address to which any commands
will be sent to when the stream is also set to ‘NMEA 2000’
(using ACommsCommand_SetStream). This value is a
useful addition to any GUI to inform the user what device
on the NMEA 2000 bus is currently targetted / active.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response.

ACommsCommand_SetN2KAddress
To set the target address to be used when sending remote
commands on the NMEA 2000 bus, use this function:

int ACommsCommand_SetN2KAddress (int Handle,
 u8 N2KAddress)

Sets the NMEA 2000 address to be used in subsequent
commands when the stream is also set to ‘NMEA 2000’.

This command should only be used when it is required
to send commands to a remote NGT / NGW device on
the NMEA 2000 network.

This ARL error code will be returned if the requested
address is deemed invalid:

ES11_COMMAND_INVALID_ADDRESS
Commanded address not valid and has been ignored

This command does not affect the NMEA 2000 address
of the local NGT/NGW device - as that address is claimed
during startup by the gateway itself. However, the API can
influence the first address that the gateway will try to claim
at the next startup by sending the ACommsCommand_
SetCanConfig command to set the ‘Preferred Address’
(that the gateway will try to claim on the next startup),

Note: This does not guarantee you will get the
preferred address, only that the gateway will try to use
this address for its first address claim attempt: if a higher
priority device has already claimed this address, the NGT/
NGW device will claim the first ‘free’ address available
after the commanded preferred address.

Actisense Comms SDK

Page 13© 2010 Active Research Limited

ACommsCommand_Reboot
To cause a full re-boot of the Actisense target device, so
that the Bootloader becomes active for its defined period,
use this function:

int ACommsCommand_Reboot (int Handle)

Forces the target device to re-boot / restart. This is
a full hardware re-boot that cycles the gateway back
to Bootloader, then through to that, back to the Main
Application firmware. Normally this is only used to force
a return to Bootloader to allow reprogramming of target
device’s firmware.

This command is not normally of interest to the ‘Higher
Level Application’ (HLA) software developer.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTag
DataType : ddConfirmSoftwareReset

ACommsCommand_ReInitMainApp
To cause a re-initialisation of the Main Application, use
this function:

int ACommsCommand_ReInitMainApp (int Handle)

Forces the Main Application firmware on the target device
to re-initialise without resetting back to the Bootloader.

This command is normally only required as a quick method
of returning the device to the defined configuration when
a ‘session only’ configuration has been used temporarily.
Any configuration change commands that indicate that a
re-initialisation will automatically occur do not need to be
followed by this command.

Naturally, there will be a short period (of typically 250
milliseconds) whilst the device is re-initialising when
it is unable to communicate and will ignore any further
command messages. The end of this ‘unavailable’ period
is indicated by the device sending the ddStartupStatus
message, which can prove to be a very useful callback
trigger to continue normal communications.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTag
DataType : ddReInitMainApp

ACommsCommand_CommitToEEPROM
To commit any config setting changes held in the target
device to the EEPROM, so they are remembered for the
next session, use this function:

int ACommsCommand_CommitToEEPROM (int Handle)

Any commanded changes to the device config settings
are by default “session-only” changes. This means,
for example, it is possible to change the baud rate and
enable proprietary code output settings, but have these
settings revert back to those stored in the EEPROM after
the target device has reset / re-initialised.

If it is required for these setting changes to be remembered
permanently, use this command to copy the “session-
only” values in to the EEPROM, and in doing so protect
them for future sessions.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTag
DataType : ddCommitToEEPROM

ACommsCommand_CommitToFlash
To commit any config setting changes held in the target
device to the Flash config sector, so they are remembered
for the next session, use this function:

int ACommsCommand_CommitToFlash (int Handle)

Currently this function is not active in any devices.

All detectable errors are part of the common error list.
Refer to the Setting up Callbacks section to handle the
device response message.

Decode : ACommsDecode_GetTag
DataType : ddCommitToFlash

 Actisense®

Page 14© 2010 Active Research Limited

ACommsCommand_GetHardwareInfo
To request the ‘Hardware Information’ from the target
device, use this function:

int ACommsCommand_GetHardwareInfo (int Handle)

Requests the ARL product ‘Hardware Information’ from
the target device, which includes:

• Bootloader’s software version number
• Bootloader’s Date and Time of program
• Main Application’s software version number
• Main Application’s Date and Time of program
• ARL Hardware (PCB) version number
• Total Operating Time (in seconds) since new
• Model Sub ID number
• ‘Operating Mode’ number

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetHardwareInfo
DataType : ddHardwareInfo

ACommsCommand_GetOperatingMode
To read the ‘Operating Mode’ from the target device, use
this function:

int ACommsCommand_GetOperatingMode (int Handle)

Retrieves the current ‘Operating Mode’ from the target
device. This mode indicates what operating rules the
target is currently using. Valid modes for an NGT-1 are:

• Transfer data using ‘Normal rules’.
This is the default mode that the target will use from
power-on. The currently defined ‘Receive PGN list’
determines what PGNs are transferred to PC, and
which are ignored / blocked. This is the preferred
operating mode if the required number of PGNs will fit
in the Rx PGN Enable list limitations.

• Transfer data using ‘Receive All PGN rules’.
This is a special mode that will transfer all PGNs
that are received to the PC. No filtering is currently
available in this mode.

Refer to BEMProtocolEnums.h for the full list of ‘Operating
Mode’ enumerations.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsCommand_GetOperatingMode
DataType : ddOperatingMode

ACommsCommand_SetOperatingMode
To set the ‘Operating Mode’ of the target device, use this
function:

int ACommsCommand_SetOperatingMode (int Handle,
 u16 OperatingMode)

Sends the new ‘Operating Mode’ to the target device.
This new mode indicates what operating rules the target
will use for the remainder of this session (until a power or
software reset occurs). Valid modes for an NGT-1 are:

• Transfer data using ‘Normal rules’.
This is the default mode that the target will use from
power-on. The currently defined ‘Receive PGN list’
determines what PGNs are transferred to PC, and
which are ignored / blocked.

• Transfer data using ‘Receive All PGN rules’.
This is a special mode that will transfer all PGNs
that are received to the PC. No filtering is currently
available in this mode.

This new mode will only operate until the current session
ends (due to a reset), at which point the default mode of
the device will be started.

Refer to BEMProtocolEnums.h for the full list of ‘Operating
Mode’ enumerations.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsCommand_GetOperatingMode
DataType : ddOperatingMode

Actisense Comms SDK

Page 15© 2010 Active Research Limited

ACommsCommand_GetHardwareBaudCodes
To read the ‘Hardware Baud codes’ from the target device,
use this function:

int ACommsCommand_GetHardwareBaudCodes
 (int Handle)

Retrieves the current ‘Hardware Baud code’ list from
the target device. This list details what Baud rates are
currently in use in the target’s hardware ports, and has
the format:

• Number of Channels / Baud rate codes
• Channel 0: Hardware Protocol being used
• Channel 0: Baud rate Code

 ... repeated for each channel in device.

The Hardware Protocol enumeration can be used to
understand what each channel’s physical layer / type is
(refer to ARLBaudCodes.h for details).

These codes can be passed to the two API helper
functions ACommsDecode_GetCANBaudCodeName and
ACommsDecode_GetUARTBaudCodeName in order to
convert the codes into more meaningful text strings.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetHardwareBaudCodes
DataType : ddHardwareBaud

ACommsCommand_SetHardwareBaudCodes
To command the ‘Hardware Baud codes’ of the target
device, use this function:

int ACommsCommand_SetHardwareBaudCodes
 (int Handle, int nBaudCodes, u8 *BaudCodes)

Sends a new ‘Hardware Baud code’ list to the target
device, detailing the requested Baud Code for each
channel.

If a particular channel’s Baud Code is not required to be
changed, the DONOT_CHANGE_U8 definition should
be used (refer to BEMProtocolEnums.h). Likewise, if the
default Baud Code for a channel is required, the USE_
DEFAULTS_U8 define should be used.

The device will respond to this command with its standard
acknowledgement and then change its hardware Baud
rates to match the new values (if valid). Therefore, The
Higher Level Application that triggered this Baud change
must reopen its Comms port using the matching Baud
rate, otherwise communication with the target will be lost
after receiving the acknowledge.

This function does not update the Port Baud Code
EEPROM config values, so these changes will be lost
when a re-initialisation (or power cycle) occurs.

If any Baud rate is deemed invalid by the target, the
acknowledgment will detail the error and what the new
Baud rate list is. The Higher Level Application should
decode this reply to handle this situation correctly.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetHardwareBaudCodes
DataType : ddHardwareBaud

 Actisense®

Page 16© 2010 Active Research Limited

ACommsCommand_GetPortBaudCodes
To read the ‘Port Baud codes’ from the target device, use
this function:

int ACommsCommand_GetPortBaudCodes (int Handle)

Retrieves the current ‘Port Baud code’ list from the target
device. This list details what Baud rates are currently set
in the target’s EEPROM configuration, and not necessarily
the actual Baud rates currently in use by the hardware.
The message format is:

• Number of Channels / Baud rate codes
• Channel 0: Hardware protocol being used
• Channel 0: Baud rate code

 ... repeated for each channel in device.

The Hardware Protocol enumeration can be used to
understand what each channel’s physical layer / type is
(refer to ARLBaudCodes.h for details).

To obtain the actual hardware Baud code values, use the
function ACommsCommand_GetHardwareBaudCodes.

These codes can be passed to the two API helper
functions ACommsDecode_GetCANBaudCodeName and
ACommsDecode_GetUARTBaudCodeName in order to
convert the codes into more meaningful text strings.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetPortBaudCodes
DataType : ddPortBaudCfg

ACommsCommand_SetPortBaudCodes
To command the ‘Port Baud codes’ of the target device,
use this function:

int ACommsCommand_SetPortBaudCodes (int Handle,
 int nBaudCodes, u8 *BaudCodes)

Sends a new ‘Port Baud code’ list to the target device.

If a particular channel’s Baud Code is not required to be
changed, the DONOT_CHANGE_U8 definition should
be used (refer to BEMProtocolEnums.h). Likewise, if the
default Baud Code for a channel is required, the USE_
DEFAULTS_U8 define should be used.

The device will respond to this command with its standard
acknowledgement and automatically store the Baud rate
changes to its EEPROM, hence making these changes
persistent.

These new Baud code values will not be used to
configure the hardware ports until a re-initialise
event occurs (through power cycle or command), so
the Higher Level Application should not change its
Comms port settings after sending this command.

Using the ACommsCommand_SetHardwareBaudCodes
command after this function will allow the new baud rates
to be used for all new communications.

If any Baud rate is deemed invalid by the target, the
acknowledgment will detail the error and what the new
baud rate list is. The Higher Level Application should
decode this reply to handle this situation correctly.

There is no need to follow this command with the EEPROM
ACommsCommand_CommitToEEPROM command.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetPortBaudCodes
DataType : ddPortBaudCfg

Actisense Comms SDK

Page 17© 2010 Active Research Limited

ACommsCommand_GetPortPCodes
To read the ‘Port P-codes’ from the target device, use this
function:

int ACommsCommand_GetPortPCodes (int Handle)

Retrieves the current ‘Port P-code’ list from the target
device. This list details what ports have their ARL ‘P-code’
message output enabled (and which do not), and has the
format:

• Channel 0: Proprietary Code enabled / disabled
 ... repeated for each channel in device.

The channel’s enable / disable state can be:
• 0: P-Codes are disabled permanently. No proprietary

ARL message will be transmitted on this channel.
• 1: P-codes are enabled permanently. The device will

transmit proprietary ARL messages on this channel in
this session and any future sessions.

• 2: P-codes are enabled for this session only. The
device will transmit proprietary ARL messages on this
channel during this session, but will stop when a reset
occurs (from a power-cycle or command).

From firmware v2.172 and onwards these current values
are the same as the EEPROM configuration values.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetPortPCodes
DataType : ddPortPCodeCfg

ACommsCommand_SetPortPCodes
To command the ‘Port P-code’ settings of the target
device, use this function:

int ACommsCommand_SetPortPCodes (int Handle,
 int nPCodes, u8 *PCodes)

Sends a new ‘P-code’ list to the target device. The target
device is capable of sending additional status and debug
information from the target’s ports, as NMEA proprietary
messages.

This information can be suppressed by setting a “0”, or
enabled by setting a “1” in the corresponding channel
location in the list. Setting to a “2” has the useful feature
of enabling the transmission of proprietary messages for
this session only - once a reset occurs (from a power-
cycle or command), the P-Code enable state will return to
disabled (“0”).

If a particular channel’s P-Code is not required to be
changed, the DONOT_CHANGE_U8 definition should
be used (refer to BEMProtocolEnums.h). Likewise, if the
default P-Code state for a channel is required, the USE_
DEFAULTS_U8 define should be used.

If any P-code setting is deemed invalid by the target, the
acknowledgment will detail the error and what the new
P-code list is. The Higher Level Application (HLA)
should always decode this reply to correctly handle
this feedback situation.

If the new ‘P-code’ settings should be made permanent
/ remembered for future sessions, then follow with the
ACommsCommand_CommitToEEPROM command.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetPortPCodes
DataType : ddPortPCodeCfg

 Actisense®

Page 18© 2010 Active Research Limited

ACommsCommand_GetPortDupDelete
To read the ‘Port Duplicate Delete’ settings from the target
device, use this function:

int ACommsCommand_GetPortDupDelete (int Handle)

Retrieves the current ‘Port Duplicate Delete’ list from
the target device. This list details what ports will have
their ‘Duplicate’ messages (if the overall bandwidth
requirements become overloaded (and which do not),
and has the format:

• Channel 0: Duplicate Deletion enabled / disabled
 ... repeated for each channel in device.

The channel’s enable / disable state can be:
• 0: Duplicate Deletion is disabled permanently. No

duplicate deletions will be performed on this channel.
• 1: Duplicate Deletion is enabled permanently. The

device will perform duplicate deletions on this channel
(when the specific conditions are met) in this session
and any future sessions.

From firmware v2.172 and onwards these current values
are the same as the EEPROM configuration values.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetPortDupDelete
DataType : ddPortDupDelete

ACommsCommand_SetPortDupDelete
To command the ‘Port Duplicate Delete’ settings of the
target device, use this function:

int ACommsCommand_SetPortDupDelete (int Handle,
 int nPortDupDelete, u8 *PortDupDelete)

Sends a new ‘Duplicate Delete’ list the target device. The
target device defaults to deleting any duplicate messages
it receives, to reduce the required bandwidth.

This operation can be suppressed by setting a “0”, or
enabled by setting a “1” in the corresponding channel
location in the list.

If a particular channel’s ‘Duplicate Delete’ is not required
to be changed, the DONOT_CHANGE_U8 definition
should be used (refer to BEMProtocolEnums.h). Likewise,
if the default ‘Duplicate Delete’ state for a channel is
required, the USE_DEFAULTS_U8 define should be used.

If any ‘Duplicate Delete’ setting is deemed invalid by
the target, the acknowledgment will detail the error and
what the new ‘Duplicate Delete’ list is. The Higher Level
Application (HLA) should decode this reply to handle this
situation correctly.

If the new ‘Duplicate Delete’ settings should be made
permanent / remembered for future sessions, then
follow with the ACommsCommand_CommitToEEPROM
command.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetPortDupDelete
DataType : ddPortDupDelete

ACommsCommand_GetTotalTime
To get the ‘Total (Operating) Time’ from the target device,
use this function:

int ACommsCommand_GetTotalTime (int Handle)

Retrieves the current total operating time from the target
device. The time is expressed in seconds, and is an
unsigned 32-bit number.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTotalTime
DataType : ddTotalTime

Actisense Comms SDK

Page 19© 2010 Active Research Limited

ACommsCommand_SetTotalTime
To set the ‘Total (Operating) Time’ to a required value (in
seconds), use this function:

int ACommsCommand_SetTotalTime (int Handle,
 u32 TotalTime, u32 Passkey)

Sets the ‘Total (Operating) Time’ to the time (in seconds)
requested, as long as the required Passkey value is valid.
This command should not normally need to be used -
as this value should normally remain unchanged, hence
the requirement to use a valid passkey to limit its use to
qualified software only.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTotalTime
DataType : ddTotalTime

ACommsCommand_GetProductInfoN2K
To get the NMEA 2000 ‘Product Information’ details from
the target device, use this function:

int ACommsCommand_GetProductInfoN2K
 (int Handle)

Retrieves the NMEA 2000 ‘Product Information’ from the
target device. This data corresponds to that accessible via
the NMEA 2000 bus by requesting PGN 126996 ‘Product
Information’, which includes:

• NMEA 2000 Support version number
• NMEA 2000 Certification Level
• NMEA 2000 Load Equivalency
• Manufacturers Model ID text string
• Manufacturers Software version code text string
• Manufacturers Model / Hardware version text string
• Manufacturers Model serial Code text string

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetProductInfoN2K
DataType : ddProductInfoN2K

ACommsCommand_GetCanConfig
To get the CAN ‘Configuration’ details from the target
device, use this function:

int ACommsCommand_GetCanConfig (int Handle)

Retrieves the CAN ‘Configuration’ from the attached
device. The ‘CAN Name’ part of this data corresponds
to that accessible via the NMEA 2000 bus by requesting
PGN 60928 ‘Address Claim’. In total, this configuration
message includes:

• CAN ‘Preferred Address’ (to start address claim with)
• CAN Name (used to claim address)
• CAN ‘Previously Claimed Address’ (last session)
• CAN ‘Source Address’ claimed (this session)
• CAN ‘Source Address’ valid (‘claimed’ / ‘not claimed’)

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetCanConfig
DataType : ddCANConfig

ACommsCommand_SetCanConfig
To command the target device to use a requested
‘Preferred Address’, with a requested ‘CAN Name’ to
claim its next NMEA 2000 address, use this function:

int ACommsCommand_SetCanConfig (int Handle,
 int Preferred, int SystemInstance, int DeviceInstance)

Sets the targeted Actisense NMEA 2000 device’s
‘Preferred Address’ and CAN Name instances to those
requested. Only the ‘System instance’ and ‘Device
instance ‘ fields in the CAN Name may be changed by the
Higher Level Application (HLA). Modification of any other
fields would invalidate the NMEA 2000 specification.

Once set, the target device will immediately perform a
new Address Claim operation using the new ‘Preferred
Address’ and ‘CAN Name’. Whilst the target device will
start its claiming process with the requested ‘Preferred
Address’, if a higher priority device has already claimed
that address, the device will claim the first ‘free’ address
available after the commanded address).

There is no need to follow this command with the EEPROM
ACommsCommand_CommitToEEPROM command.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetCanConfig
DataType : ddCANConfig

 Actisense®

Page 20© 2010 Active Research Limited

ACommsCommand_SetCanInfoField1
ACommsCommand_SetCanInfoField2
ACommsCommand_SetCanInfoField3
To set the CAN ‘Information’ fields 1 or 2 (Installation
Description) in a target device to a required text string,
use the corresponding function:

int ACommsCommand_SetCanInfoField1 (int Handle,
 const char *InfoString)
int ACommsCommand_SetCanInfoField2 (int Handle,
 const char *InfoString)

Sets the corresponding CAN ‘Information’ text string in
the target device. This command corresponds to that
accessible via the NMEA 2000 bus by commanding PGN
126998 ‘CAN Config Information’.

CAN ‘Installation Description fields (1 and 2) are intended
to be ‘filled in’ by the installer when the device is installed
to add supplementary information about the product’s
location, power supply source / breaker etc. This will allow
future identification of this device on the NMEA 2000 bus.

Currently, it is not possible for a Higher Level Application
to set the CAN ‘Information’ field 3 (Manufacturer
Information) - as this string must retain the Manufacturer’s
details. The target device will reply with a ‘Not supported’
response.

There is no need to follow this command with the EEPROM
ACommsCommand_CommitToEEPROM command.

All API detectable errors are part of the common error list
detailed at the beginning of this section, except:

ES11_COMMAND_UNEXPECTED_DATATYPE
DataType is not ‘CAN Info Field’ 1, 2, or 3

Refer to Setting up Callbacks to handle the device
response message.

Decode : ACommsDecode_GetCanInfoField1-3
DataType : ddCANInfoField1-3

ACommsCommand_GetCanInfoField1
ACommsCommand_GetCanInfoField2
ACommsCommand_GetCanInfoField3
To get the CAN ‘Information’ fields 1, 2 or 3 from the target
device, use the corresponding function:

int ACommsCommand_GetCanInfoField1 (int Handle)
int ACommsCommand_GetCanInfoField2 (int Handle)
int ACommsCommand_GetCanInfoField3 (int Handle)

Retrieves the CAN ‘Information’ from the target device.
This data corresponds to that accessible via the NMEA
2000 bus by requesting PGN 126998 ‘CAN Information’,
this includes:

• CAN Installation Description, field 1
• CAN Installation Description, field 2
• CAN Manufacturer Information, field 3

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetCanInfoField1-3
DataType : ddCANInfoField1-3

ACommsCommand_SetRxPGN
To enable or disable a receive PGN in the target device,
using the default PGN Mask, use this function:

int ACommsCommand_SetRxPGN (int Handle,
 u32 PGN, PGNEnable_t Enable)

Uses a simplified version of the ‘Extended’ version
(defined below) that enables or disables a PGN using the
library default value for the PGN Mask (defined within the
target). This function is recommended when a single PGN
is to be set in a single Enable list ‘slot’. For special cases
where multiple PGN’s are to be set in a single Enable list
‘slot’, refer to the Rx PGN Enable list section.

This function is the equivalent of calling the ‘Extended’
version (ACommsCommand_SetRxPGNEx) with the
mask value set to USE_DEFAULT_PGN_MASK.

Refer to the ‘Extended’ version below for maximum size
restrictions on the ‘Rx PGN Enable list’.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetRxPGN
DataType : ddEnableRxPGN

Actisense Comms SDK

Page 21© 2010 Active Research Limited

ACommsCommand_SetRxPGNEx
To enable or disable a receive PGN in the target device,
using a user defined PGN Mask, use this function:

int ACommsCommand_SetRxPGNEx (int Handle,
 u32 PGN, PGNEnable_t Enable, PGNMask_t Mask)

The ‘Extended’ version that enables or disables a PGN
using the user defined PGN Mask. This function is
recommended for special cases where multiple PGN’s
are to be set in a single Enable list ‘slot’ (except for the
Proprietary 256 PGN blocks that can be set using the
standard version above), refer to the Rx PGN Enable list
section for further details.

The ‘real’ Rx PGN Enable List has a size of 28 ‘slots’.

The ‘virtual’ Rx PGN Enable List size is 7 ‘slots’ -
these are the core PGNs which are always received (and
processed) by the target device, but can be optionally
‘copied’ back to the PC, if added to the ‘Enable list’.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetRxPGN
DataType : ddEnableRxPGN

ACommsCommand_GetRxPGN
To get the required PGN’s parameters (PGN & Mask, plus
Enable status) from the target device, use this function:

int ACommsCommand_GetRxPGN (int Handle,
 u32 PGN)

Simple operation to retrieve the single specified PGN’s
parameters (PGN & Mask, plus the Enable status) from
the target device.

When it is more useful to retrieve the entire ‘Rx PGN
Enable list’ in a single operation, the ACommsCommand_
GetRxPGNList command should be used.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetRxPGN
DataType : ddEnableRxPGN

ACommsCommand_SetTxPGN
To enable or disable a transmit PGN in the target device,
using the default PGN Tx Rate and/or Tx Timeout, use this
function:

int ACommsCommand_SetTxPGN (int Handle,
 u32 PGN, PGNEnable_t Enable)

Uses a simplified version of the ‘Extended’ version
(defined below) that enables or disables a PGN using the
library default values for PGN Tx Rate and/or Tx Timeout
(defined within the targets database).

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTxPGN
DataType : ddEnableTxPGN

ACommsCommand_SetTxPGNEx
To enable or disable a transmit PGN in the target device,
using a user defined PGN Tx Rate and/or Tx Timeout, use
this function:

int ACommsCommand_SetTxPGNEx (int Handle,
 u32 PGN, PGNEnable_t Enable,
 u32 Rate, u32 Timeout)

The ‘Extended’ version that enables or disables a PGN
using the user defined PGN Tx Rate and/or Tx Timeout.
This function is recommended for special cases where
the default Tx Rate and/or Tx Timeout values are not
acceptable to the user.

The ‘virtual’ Tx Enable List has a size of 30 ‘slots’.

 All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTxPGN
DataType : ddEnableTxPGN

 Actisense®

Page 22© 2010 Active Research Limited

ACommsCommand_GetTxPGN
To get the required PGN’s parameters (PGN & Mask, plus
Enable status) from the target device, use this function:

int ACommsCommand_GetTxPGN (int Handle,
 u32 PGN)

Simple operation to retrieve the single specified PGN’s
parameters (PGN & Mask, plus the Enable status) from
the target device.

When it is more useful to retrieve the entire ‘Tx PGN
Enable list’ in a single operation, the ACommsCommand_
GetTxPGNList command should be used.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTxPGN
DataType : ddEnableTxPGN

ACommsCommand_GetRxPGNList
To get the current Rx PGN Enable List from the target
device, use this function:

int ACommsCommand_GetRxPGNList (int Handle)

Retrieves the current RAM (session only) ‘Rx PGN Enable
list’ from the target device. If the ‘Activate’ command
has not been sent following any changes to the ‘Rx
PGN Enable list’, the returned list will be the list being
built up (by the API) and not the list actually being used
by the target to pass PGN data on to the API. Refer to
ACommsCommand_ActivatePGNEnableLists for more
details on this distinction.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetRxPGNList
DataType : ddRxPGNEnableList

ACommsCommand_GetTxPGNList
To get the current Tx PGN Enable List from the target
device, use this function:

int ACommsCommand_GetTxPGNList (int Handle)

Retrieves the current RAM (session only) ‘Tx PGN Enable
list’ from the target device. If the ‘Activate’ command
has not been sent following any changes to the ‘Tx PGN
Enable list’, the returned list will be the list being built up
(by the API) and not the list actually being used by the
target to pass PGN data on to the NMEA 2000 bus. Refer
to ACommsCommand_ActivatePGNEnableLists for more
details on this distinction.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTxPGNList
DataType : ddTxPGNEnableList

ACommsCommand_ClearPGNList
ACommsCommand_ClearRxPGNList
ACommsCommand_ClearTxPGNList
To clear the entire Rx, Tx or both ‘PGN Enable lists’ in the
target device, use the corresponding function:

int ACommsCommand_ClearPGNList (int Handle,
 PGNEnableList_t ListID)
int ACommsCommand_ClearRxPGNList (int Handle)
int ACommsCommand_ClearTxPGNList (int Handle)

Commands the clearing of the requested ‘PGN Enable
list’ - resulting in all PGN data being lost. This command
is normally actioned immediately before building up
a new list from scratch. The two separate functions of
’ClearRxPGNList’ and ‘ClearTxPGNList’ allow the clearing
of an individual list without sending the ‘ListID’ specifier.

All API detectable errors are part of the common error list
detailed at the beginning of this section, except for:

ES11_COMMAND_DATA_OUT_OF_RANGE
‘List ID’ is an invalid value

Refer to Setting up Callbacks to handle the device
response message.

Decode : ACommsDecode_GetTag
DataType : ddDeletePGNEnableList

Actisense Comms SDK

Page 23© 2010 Active Research Limited

ACommsCommand_ActivatePGNEnableLists
To activate both ‘PGN Enable lists’ in the target device,
use this function:

int ACommsCommand_ActivatePGNEnableLists
 (int Handle)

Activates the new ‘PGN Enable lists’ in the target device by
causing a re-initialisation of the CAN hardware so that the
new values can be actively used. The simple command
response indictes that the required activation has been
triggered. This command will normally follow the building
up of a new list by using the ‘SetRxPGN’ and ‘SetTxPGN‘
commands.

This allows Higher Level Application (via the API) to clear
the lists, build up a new set of lists, and then activate them
while the unit is still processing data based upon the list
that is currently active in the device. In this way, the time
taken to ‘swap’ from one ‘Enable list’ to another is kept to
the absolute bare minimum - reducing the ‘down-time’.

If the new ‘PGN Rx/Tx Lists’ should be made permanent
/ remembered for future sessions, then follow with the
ACommsCommand_CommitToEEPROM command.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetTag
DataType : ddActivatePGNEnableLists

ACommsCommand_
SetDefaultPGNEnableList
To command the target device to reset the requested
‘PGN Enable list’ back to the internally held (factory)
defaults list, use this function:

int ACommsCommand_SetDefaultPGNEnableList
 (int Handle, PGNEnableList_t ListID)

Returns the target device back to the (permanently stored
in the firmware) factory defaults for the requested Rx, Tx
or both ‘PGN Enable lists’. Can be used as a quick ‘reset
to a known position’ operation.

All API detectable errors are part of the common error list
detailed at the beginning of this section, except for:

ES11_COMMAND_DATA_OUT_OF_RANGE
‘List ID’ is an invalid value

Refer to Setting up Callbacks to handle the device
response message.

Decode : ACommsDecode_GetTag
DataType : ddDefaultPGNEnableList

 Actisense®

Page 24© 2010 Active Research Limited

ACommsCommand_
GetParamsPGNEnableLists
To get the Rx and Tx ‘PGN Enable lists’ parameters from
the target device, use this function:

int ACommsCommand_GetParamsPGNEnableLists
 (int Handle)

Retrieves the current Rx and Tx ‘PGN Enable list’
parameters from the target device. This includes:

• Rx PGN Enable List
- Number of ‘real’ PGNs in use in
- Maximum capacity of ‘real’ PGNs
- Number of ‘virtual’ PGNs in use
- Maximum capacity of ‘virtual’ PGNs

• Tx PGN Enable List
- Number of ‘virtual’ PGNs in use
- Maximum capacity of ‘virtual’ PGNs

• ‘Hardware - Enable List’ synchronised status. If this is
returned as ‘false’ /’Not synchronised’, then the HLA
must ‘Activate’ the new PGN lists in order to copy the
new values to the hardware registers. A subsequent
use of this command will then show this value as ‘true’
/ ‘Synchronised’.

All API detectable errors are part of the common error list
detailed at the beginning of this section. Refer to Setting
up Callbacks to handle the device response message.

Decode : ACommsDecode_GetParamsPGNEnableLists
DataType : ddParamsPGNEnableLists

Actisense Comms SDK

Page 25© 2010 Active Research Limited

API_CommsLog
This is a useful Actisense Comms data logging module. It
allows for a logging output to an ‘Enhanced Binary Log’
(EBL) format. This is a pure binary format with embedded
control codes to add time-stamping and other information
to the file (to aid in reconstruction of the data timeline for
replay and viewing of the data).

All API_CommsLog functions are [INTERNAL] to the
PC and do not generate any external communication
messages to the attached ARL device.

ACommsLog_Enable
To enable / activate the logging of a given Comms port to
a requested file, use this function:

int ACommsLog_Enable (int Handle,
 const char* FileStem, u32 EnableMask)

Enables data logging to file (or files) for the supplied
Actisense Comms port handle. The supplied file name
is extended to include whether it has received (‘Rx’) or
transmit (‘Tx’) data stored in it, plus the ‘format’ type used
(currently limited to EBL only).

For example, FileStem of “Log”, creates full File names of
“Log.rx.ebl” (for the Rx EBL data) & “Log.tx.ebl” (for the
Tx EBL data).

To turn off logging of all resources, pass in an ‘Enable
Mask ‘of zero (i.e. no log bit flags are set).

If it is required to log both the Rx and Tx data to file, this
must be ‘Enabled’ with a single call to this function. Any
subsequent call to this function will close any previously
enabled / active log files.

For example:
If the first call uses the mask of COMMSLOG_EBL_RX (to
setup the ‘Rx’ data log file), and then a subsequent call
uses the new mask COMMSLOG_EBL_TX (to setup the
‘Tx’ data log file), the second call will actually close the ‘Rx’
data log file setup by the first call (as the COMMSLOG_
EBL_RX bit flag is zero in the second call).

To enable both Tx and Rx logging of Comms port
‘MyHandle’, to the log file ‘log’ (detailed above), use:

ACommsLog_Enable (MyHandle, “Log”,
 (COMMSLOG_EBL_RX | COMMSLOG_EBL_TX))

If an error is detected, one of these ARL error codes will
be returned by the API:

ES11_COMMS_LOG_FILE_ERROR
FileStem text length is zero (Null)

ES11_COMMSLOG_FILENAME_TOOLONG
FileStem text length plus extensions is too long

ES11_COMMSLOG_CANNOT_OPEN
An internal Windows error

 Actisense®

Page 26© 2010 Active Research Limited

API_Decode
This module contains all the required decode functions
necessary to understand the Actisense proprietary BST
messages received from the attached Actisense device.

The information sent by the device using this proprietary
binary coded format ‘BST’, is either:

• In response to an API command that is specified in
the API_Command section of this document.

• Sent automatically, at startup of the device, when
an operational error is detected by the device, or at
regular intervals to provide system status data.

When decode callbacks are enabled for a particular data
type, the API will automatically action a call to the Higher
Level Application (HLA) defined handling function. The
HLA may then retrieve the decoded message data for that
data type, in an easy to access API structure.

In this way, the complexity of the BST message format is
hidden and is replaced by an easy to read structure.

The API will automatically handle any API command
response timeouts. The API and Higher Level Application
(HLA) should follow this sequence of events:

• If the expected response has not been received by the
API within the specified time (defaults to 2.0 seconds),
the callback associated with that data type is called
with the ‘Decode Reason’ set to ‘drDecodeTimeout’.

• The HLA should handle this ‘Decode Timeout’ callback
as it requires - e.g. by triggering a re-transmission of
the original message, or by displaying the failure /
timeout on the GUI for the user to interpret.

• The HLA must avoid calling the data types associated
decode function - as this operation will naturally fail
due to the response message not being received.

The data structures that are returned (by reference) in the
following API ‘Decode Rx message’ functions, are fully
documented in the ‘API_Decode_Datatypes’ header file.

All API_Decode functions are [INTERNAL] to the PC
and do not generate any external communication
messages to the attached ARL device.

ACommsDecode_GetAge
To determine the ‘Age’ of the given received message
‘Tag’, use this function:

u32 ACommsDecode_GetAge
 (sDecodeTag* DecodeTag)

Calculates the time difference (in milliseconds) between
when the given message ‘Tag’ was received and the
current system time.

Returned 32-bit value can hold a time difference of almost
50 days, with a millisecond resolution (far longer than the
Rx buffer would be able to hold such a message for).

ACommsDecode_GetDataTypeName
To obtain the ‘Data Type’ name as a pointer to a text
string, use this function:

const char * ACommsDecode_GetDataTypeName
 (DecodeData_t DataType,
 DecodeDetail_t DecodeDetail)

Returns a pointer to the null-terminated text string that
corresponds to the given ‘Data Type’. The referenced
‘Name’ text string can be useful when displaying
callback’s decoded data.

If an error is detected whilst retrieving the requested text
string pointer, the pointer will be set to “Datatype Not
Found” and this ARL error code will be returned:

ES11_DECODE_NO_DEFINITION
Given ‘Data Type’ not recognised (has no definition)

ACommsDecode_GetUARTBaudCodeName
To obtain the UART ‘Baud Code’ name as a pointer to a
text string, use this function:

con char* ACommsDecode_GetUARTBaudCodeName
 (u32 Code, DecodeDetail_t DecodeDetail)

Returns a pointer to the null-terminated text string that
corresponds to the given UART ‘Baud Code’. The
referenced ‘Name’ text string can be either ‘Brief’ or ‘Full’
(determined by the ‘DecodeDetail’ setting) and is and
normally useful when displaying the decoded value of the
target’s UART Baud rate to the user.

This can help decode the Baud code values returned by
the two API commands:

ACommsCommand_GetPortBaudCodes
ACommsCommand_SetPortBaudCodes

Actisense Comms SDK

Page 27© 2010 Active Research Limited

ACommsDecode_GetCANBaudCodeName
To obtain the CAN ‘Baud Code’ name as a pointer to a
text string, use this function:

const char* ACommsDecode_GetCANBaudCodeName
 (u32 Code, DecodeDetail_t DecodeDetail)

Returns a pointer to the null-terminated text string
that corresponds to the given CAN ‘Baud Code’. The
referenced ‘Name’ text string can be either ‘Brief’ or ‘Full’
(determined by the ‘DecodeDetail’ setting) and is normally
useful when displaying the decoded value of the target’s
CAN Baud rate to the user.

This can help decode the Baud code values returned by
the two API commands:

ACommsCommand_GetPortBaudCodes
ACommsCommand_SetPortBaudCodes

ACommsDecode_GetModelIDName
To obtain the ARL ‘Model ID code’ name as a pointer to a
text string, use this function:

const char* ACommsDecode_GetModelIDName
 (u32 Code, DecodeDetail_t DecodeDetail)

Returns a pointer to the null-terminated text string that
corresponds to the given ARL ‘Model ID code’. The
referenced ‘Name’ text string can be either ‘Brief’ or
‘Full’ (determined by the ‘DecodeDetail’ setting) and is
normally useful when displaying the decoded values of
the ‘Tag’ section of any message received from the target.

This can help decode the Model ID value found in all BST
messages received from the target (in the ‘Tag’ section)
via the decode function:

ACommsDecode_GetTag

This can be very useful in determining what the target is
(an NGT-1 or an NGW-1) so the Higher Level Application
(HLA) can alter the possible options that are available to
the user accordingly.

ACommsDecode_SetCallback
To set up a callback function that is triggered by the
reception of a specific BST message, use this function:

int ACommsDecode_SetCallback (int Handle,
 DecodeData_t Datatype,
void (*pFunc)(void*, DecodeData_t, DecodeReason_t),
 void* pUserCallbackData)

Sets up a callback to be actioned when the decoded
data has been received by the API and is waiting to be
collected. Setting the callback causes a tracking object to
be created for this ‘Data Type’. A data type is composed
of a BST or a BST-BEMP pair which will be tracked and
whose BST messages will be stored in a tracker buffer
until all packets for that message have been received.

No windows should be created by the callback
handling function, as the wait loop within the Comms
thread does not process windows messages to
reduce overhead; if the callback function creates a
window, it could cause a system deadlock due to the
unprocessed message queue.

To disable the callback for this function ID, call this ‘Set’
function again with a NULL function pointer, thus stopping
any further callbacks.

This function can be called again to change the callback
to a different one in cases where different redirections are
required by the Higher Level Application (HLA).

Full callback function parameter details can be found
in the ‘API_Decode’ header file.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_DECODE_NO_DEFINITION
Given ‘Data Type’ not recognised (has no definition)

 Actisense®

Page 28© 2010 Active Research Limited

ACommsDecode_SetCallbackGroup
To set up a group of callback functions that are individually
triggered by the reception of specific BST messages, use
this function:

int ACommsDecode_SetCallbackGroup (int Handle,
 DecodeData_t *Datatype,
 int DataTypeSize,
void (*pFunc)(void*, DecodeData_t, DecodeReason_t),
 void* pUserCallbackData)

Sets up a group of callbacks to be actioned when the
decoded data has been received by the API and is waiting
to be collected. One callback to one message type. Setting
the callbacks causes a tracking object to be created for
each ‘Data Type’ requried. A data type is composed of a
BST or a BST-BEM pair which will be tracked and whose
BST messages will be stored in a tracker buffer until all
packets for that message have been received.

Useful extension to the ACommsDecode_SetCallback
base function when more than one callback is required
to be setup for a common group of BST messages. The
same result can achieved by calling the base function
multiple times, however, this extended version allows
multiple callbacks to be grouped.

No windows should be created by the callback
handling function, as the wait loop within the Comms
thread does not process windows messages to
reduce overhead; if the callback function creates a
window, it could cause a system deadlock due to the
unprocessed message queue.

To disable the callback for a particular function ID, call the
‘SetCallback’ function with a NULL function pointer, thus
stopping any further callbacks.

This function can be called again to change the callbacks
to different ones in cases where different redirections are
required by the Higher Level Application (HLA).

Full callback function parameter details can be found
in the ‘API_Decode’ header file.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_DECODE_NO_DEFINITION
Given ‘Data Type’ not recognised (has no definition)

ACommsDecode_GetTag
To get the decoded ‘Tag’ information section of a received
BST message, use this function:

int ACommsDecode_GetTag (int Handle,
 sDecodeTag *pTag, DecodeData_t DataType)

All BST messages contain a ‘Tag’ section, with a subset of
these messages also containing a ‘Data’ section.

This generic function returns a structure containing
the basic tracking data from the given message ‘Tag’,
this function should be called from within a callback
handler that’s actioned when a message of the data type
DecodeData_t passed into this function has arrived.

As well as showing that the message was received,
decoded and acted upon by the target device, the decode
‘Tag’ also provides essential information about the status
of the processed message and the unit that responded.

The sDecodeTag structure is:
• ResponseTime: The command response time, or

non-command message interval, in milliseconds.
• PCTickCount: Tick count at time of decode.
• Error: Message error code (Refer to ARLErrorCode.h).
• Serial: Unique ARL serial number of the device that

returned this message.
• ModelID: ARL Model ID number
• DataType: The data/message type this tag is attached

to (identifies the message contents)
• SourceStream: Stream that message arrived from.
• SourceAddress: Address that message arrived from.

This function can be used for all message data types,
and is most useful when the received message only has
a ‘Tag’ section (no ‘Data’ section). This is typically when
the command response simply indicates that a command
has been received and acted upon by the target device:

Command:
 ACommsCommand_CommitToEEPROM
 ACommsCommand_CommitToFlash
 ACommsCommand_Reboot
 ACommsCommand_ReInitMainApp
 ACommsCommand_ActivatePGNEnableLists
 ACommsCommand_SetDefaultPGNEnableList
 ACommsCommand_ClearPGNList
 ACommsCommand_ClearRxPGNList
 ACommsCommand_ClearTxPGNList

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

Actisense Comms SDK

Page 29© 2010 Active Research Limited

ACommsDecode_GetHardwareInfo
To decode the ‘Hardware Information’ response message
that was received from a device, use this function:

int ACommsDecode_GetHardwareInfo (int Handle,
 sDecodeHardwareInfo *pHardInfo)

When a callback occurs and the enumerated data type is
‘ddHardwareInfo’, this function can be called to obtain the
easy to use ‘Hardware Information’ data structure that has
been decoded from the received message.

See the ACommsCommand_GetHardwareInfo command
description for further details.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

Command : ACommsCommand_GetHardwareInfo
DataType : ddHardwareInfo

ACommsDecode_GetOperatingMode
To decode the ‘Operating Mode’ response message that
was received from a device, use this function:

int ACommsDecode_GetOperatingMode (int Handle,
 sDecodeOperatingMode *pOperatingMode)

When a callback occurs and the enumerated data type is
‘ddOperatingMode’, this function can be called to obtain
the easy to use ‘Operating Mode’ data structure that has
been decoded from the received message.

See the ACommsCommand_GetOperatingMode command
description for further details.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

Command : ACommsCommand_GetOperatingMode
Command : ACommsCommand_SetOperatingMode
DataType : ddOperatingMode

ACommsDecode_GetHardwareBaudCodes
To decode the ‘Hardware Baud codes’ response message
that was received from a device, use this function:

int ACommsDecode_GetHardwareBaudCodes
 (int Handle, sDecodePortBaudCodes *pBaudCodes)

When a callback occurs and the enumerated data type
is ‘ddHardwareBaudCfg’, this function can be called
to obtain the easy to use ‘Baud codes’ data structure
decoded from the received message. The contents of the
structure indicate the current baud rates actually being
used by the target device to communicate, and are not
necessarily the same as the baud rates actually stored in
the targets EEPROM.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

Command : ACommsCommand_GetHardwareBaudCodes
Command : ACommsCommand_SetHardwaretBaudCodes
DataType : ddHardwareBaudCfg

ACommsDecode_GetPortBaudCodes
To decode the ‘Port Baud codes’ response message that
was received from a device, use this function:

int ACommsDecode_GetPortBaudCodes (int Handle,
 sDecodePortBaudCodes *pBaudCodes)

When a callback occurs and the enumerated data type
is ‘ddPortBaudCfg’, this function can be called to obtain
the easy to use ‘Baud codes’ data structure that has been
decoded from the received message. The contents of
the structure indicate the baud rates stored (in EEPROM)
inside the target device. The stored baud rates will be used
on all future device initialisations and are not necessarily
the same as the current Hardware baud rates.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

Command : ACommsCommand_GetPortBaudCodes
Command : ACommsCommand_SetPortBaudCodes
DataType : ddPortBaudCfg

 Actisense®

Page 30© 2010 Active Research Limited

ACommsDecode_GetPortPCodes
To decode the ‘Port P-codes’ response message that was
received from a device, use this function:

int ACommsDecode_GetPortPCodes (int Handle,
 sDecodeArray_u8 *pPCodes)

When a callback occurs and the enumerated data type is
‘ddPortPCodeCfg’, this function can be called to obtain
the easy to use ‘Port P-codes’ data structure that has
been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

Command : ACommsCommand_GetPortPCodes
Command : ACommsCommand_SetPortPCodes
DataType : ddPortPCodeCfg

ACommsDecode_GetPortDupDelete
To decode the ‘Port Duplicate Delete’ response message
that was received from a device, use this function:

int ACommsDecode_GetPortDupDelete (int Handle,
 sDecodeArray_u8 *pDupDelete)

When a callback occurs and the enumerated data type is
‘ddPortDupDelete’, this function can be called to obtain
the easy to use ‘Port Duplicate Delete’ data structure that
has been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

Command : ACommsCommand_GetPortDupDelete
Command : ACommsCommand_SetPortDupDelete
DataType : ddPortDupDelete

ACommsDecode_GetTotalTime
To decode the ‘Total Operating Time’ response message
that was received from a device, use this function:

int ACommsDecode_GetTotalTime (int Handle,
 sDecodeTotalTime *pTotalTime)

When a callback occurs and the enumerated data type
is ‘ddTotalTime’, this function can be called to obtain the
easy to use ‘Total Operating Time’ data structure that has
been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

Command : ACommsCommand_GetTotalTime
Command : ACommsCommand_SetTotalTime
DataType : ddTotalTime

ACommsDecode_GetProductInfoN2K
To decode the ‘NMEA 2000 Product Information’ response
message that was received from the target device, use
this function:

int ACommsDecode_GetProductInfoN2K (int Handle,
 sDecodeProductInfoN2K *pProductInfoN2K)

When a callback occurs and the enumerated data type is
‘ddProductInfoN2K’, this function can be called to obtain
the easy to use ‘NMEA 2000 Product Information’ data
structure decoded from the received message.

Refer to the ACommsCommand_GetProductInfoN2K
command description for further details.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : ACommsCommand_GetProductInfoN2K
DataType : ddProductInfoN2K

Actisense Comms SDK

Page 31© 2010 Active Research Limited

ACommsDecode_GetCanConfig
To decode the ‘CAN Configuration’ response message
that was received from the target device, use this function:

int ACommsDecode_GetCanConfig (int Handle,
 sDecodeCanConfig *pCanConfig)

When a callback occurs and the enumerated data type is
‘ddCanConfig’, this function can be called to obtain the
easy to use ‘CAN Configuration’ data structure that has
been decoded from the received message.

Refer to the ACommsCommand_GetCANConfig
command description for further details.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : ACommsCommand_GetCanConfig
Command : ACommsCommand_SetCanConfig
DataType : ddCanConfig

ACommsDecode_GetCanInfoField1-3
To decode a ‘CAN Information Field 1-3’ response
message received from a device, use this function:

int ACommsDecode_GetCanInfoField1-3 (int Handle,
 sDecodeCanInfoField *pCanInfoField,
 DecodeData_t DataType)

When a callback occurs and the enumerated data
type is either ‘ddCanInfoField1’, ‘ddCanInfoField2’ or
‘ddCanInfoField3’, this function can be called to obtain
the easy to use ‘CAN Information Field 1-3’ data structure
that has been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES10_BST_INVALID_STRING_LEN
String length exceeded the allowable size

Command : ACommsCommand_GetCanInfoField1-3
Command : ACommsCommand_SetCanInfoField1-3
DataType : ddCanInfoField1-3

ACommsDecode_GetRxPGN
To decode the ‘Enable / Disable Rx PGN’ response
message that was received from the target device, use
this function:

int ACommsDecode_GetRxPGN (int Handle,
 sDecodeRxPGN *pDecodeRxPGN)

When a callback occurs and the enumerated data type is
‘ddEnableRxPGN’, this function can be called to obtain
the easy to use ‘Enable / Disable Rx PGN’ data structure
that has been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : ACommsCommand_GetRxPGN
Command : ACommsCommand_SetRxPGN
Command : ACommsCommand_SetRxPGNEx
DataType : ddEnableRxPGN

ACommsDecode_GetTxPGN
To decode the ‘Enable / Disable Tx PGN’ response
message that was received from the target device, use
this function:

int ACommsDecode_GetTxPGN (int Handle,
 sDecodeTxPGN *pDecodeTxPGN)

When a callback occurs and the enumerated data type
is ‘ddEnableTxPGN’, this function can be called to obtain
the easy to use ‘Enable / Disable Tx PGN’ data structure
that has been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : ACommsCommand_GetTxPGN
Command : ACommsCommand_SetTxPGN
Command : ACommsCommand_SetTxPGNEx
DataType : ddEnableTxPGN

 Actisense®

Page 32© 2010 Active Research Limited

ACommsDecode_GetRxPGNList
To decode the ‘Rx PGN Enable List’ response message
that was received from the device, use this function:

int ACommsDecode_GetRxPGNList (int Handle,
 sDecodeRxPGNList *pDecodeRxPGNList)

When a callback occurs and the enumerated data type
is ‘ddRxPGNEnableList’, this function can be called to
obtain the easy to use ‘Rx PGN Enable List’ data structure
that has been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : ACommsCommand_GetRxPGNList
DataType : ddRxPGNEnableList

ACommsDecode_GetTxPGNList
To decode the ‘Tx PGN Enable List’ response message
that was received from the device, use this function:

int ACommsDecode_GetTxPGNList (int Handle,
 sDecodeTxPGNList *pDecodeTxPGNList)

When a callback occurs and the enumerated data type
is ‘ddTxPGNEnableList’, this function can be called to
obtain the easy to use ‘Tx PGN Enable List’ data structure
that has been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : ACommsCommand_GetTxPGNList
DataType : ddTxPGNEnableList

ACommsDecode_GetParamsPGNEnableLists
To decode the ‘Parameters of the PGN Enable Lists’
response message that was received from the target
device, use this function:

int ACommsDecode_GetParamsPGNEnableLists
 (int Handle,
 sDecodePGNEnableListStatus* pPGNListStatus)

When a callback occurs and the enumerated data type
is ‘ddParamsPGNEnableLists’, this function can be called
to obtain the easy to use ‘Parameters of the PGN Enable
Lists’ data structure that has been decoded from the
received message.

For a description of the information in this message, refer
to the ACommsCommand_GetParamsPGNEnableLists
command description.

Decoding this response message can be very useful to
the Higher Level Application (HLA) - as this details the
number of Rx and Tx Real and Virtual PGN ‘slots’ that
are currently used and the maximum number that are
available of each type. In this way you will always know
exactly how many PGN ‘slots’ are in use and how many
you have left available to you.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : ACommsCommand_GetParamsPGNEnableLists
DataType : ddParamsPGNEnableLists

Actisense Comms SDK

Page 33© 2010 Active Research Limited

ACommsDecode_GetStartupStatus
To decode the ‘Startup Status’ response message that
was received from the target device, use this function:

int ACommsDecode_GetStartupStatus (int Handle,
 sDecodeStartupStatus* pStartupStatus)

When a callback occurs and the enumerated data type is
‘ddStartupStatus’, this function can be called to obtain the
easy to use ‘Startup Status’ data structure that has been
decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : None - device sends once at startup
DataType : ddStartupStatus

ACommsDecode_GetSystemStatus
To decode the ‘System Status’ response message that
was received from the target device, use this function:

int ACommsDecode_GetSystemStatus (int Handle,
 sDecodeSystemStatus *pSystemStatus)

When a callback occurs and the enumerated data type
is ‘ddSystemStatus’, this function can be called to obtain
the easy to use ‘System Status’ data structure that has
been decoded from the received message.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : None - device sends once per second
 (if P-codes’ enabled for that port)
DataType : ddSystemStatus

ACommsDecode_GetDbgTimeProfiler
To decode the ‘Debug Time Profiler’ response message
that was received from the device, use this function:

int ACommsDecode_GetDbgTimeProfiler (int Handle,
 sDbgTimeProfiler* pTimeProfile)

When a callback occurs and the enumerated data type
is ‘ddDebugTimeProfiler’, this function can be called to
obtain the easy to use ‘Debug Time Profiler’ data structure
that has been decoded from the received message.

Under normal operations, this message will not be
transmitted by the target device. This message will only
ever be made available as part of a ‘debug’ firmware
version for use in ‘beta’ test operations.

If an error was detected by the API, one of these ARL error
codes will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_COMMAND_TRACKER
Message tracker not found - check Tag pointer valid

ES11_COMMS_DECODE_BAD_DATA
Unexpected extra data found in response message

Command : None - device sends once per second
 (if P-codes’ enabled for that port AND
 using a special ‘debug’ firmware)
DataType : ddDebugTimeProfiler

 Actisense®

Page 34© 2010 Active Research Limited

API_NMEA0183
This module forms the low-level NMEA 0183 Protocol
interface of the Actisense Comms Library.

These functions would typically only be of interest when
using the API in conjunction with the Actisense NGW-1
(NMEA 2000 to NMEA 0183) device. However, they will
work just as well with any NMEA 0183 device.

Care must be taken to ensure that the Comms port has
been opened using the same Baud rate of the NMEA
0183 device that is connect to that port. Typically this will
be 4800 Baud for standard devices, or 38400 Baud for
‘High Speed’ (HS) devices.

All API_NMEA0183 functions (except for ‘Write’)
are [INTERNAL] to the PC and do not generate any
external communication messages to the attached
ARL device.

ACommsN183_Write
To send (write) an NMEA 0183 message to the NMEA
0183 transmit queue of the given Comms port handle,
use this function:

int ACommsN183_Write (int Handle, sN183Msg *msg)

Adds the given NMEA 0183 message to the transmit
queue of the given Comms port handle. The queue
handler will transfer all new messages to the Windows
COM port at the next opportunity.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_BUFFER_OVERFLOW
Given handle’s queue is full - write operation had to
remove the oldest queued message first

ACommsN183_Read
To get (read) the next received NMEA 0183 message from
the NMEA 0183 receive queue of the given Comms port
handle, use this function:

int ACommsN183_Read (int Handle, sN183Msg *msg)

Retrieves the next NMEA 0183 message from the receive
queue of the given Comms port handle. Typically this
function is called successively until the receive queue has
been emptied.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_BUFFER_UNDERFLOW
Given handle’s queue is empty - read operation has
failed to find a message

ACommsN183_GetRxQSize
To get the total number of NMEA 0183 messages (still to
be read) that are waiting in the NMEA 0183 receive queue
of the given Comms port handle, use this function:

int ACommsN183_GetRxQSize (int Handle,
 size_t *BufferSize)

Returns the current size of the NMEA 0183 receive queue,
which can be used to determine if any NMEA 0183
data has been received (and requires processing) if the
‘data polling’ method is preferred by the Higher Level
Application (HLA). However, it is more normal to use the
NMEA 0183 callback functionality - as this helps keep the
CPU loading to a minimum.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

Actisense Comms SDK

Page 35© 2010 Active Research Limited

ACommsN183_FlushRx
To delete (flush) all unread NMEA 0183 messages from
the NMEA 0183 receive queue of the given Comms port
handle, use this function:

int ACommsN183_FlushRx (int Handle)

Clears the NMEA 0183 receive queue. This will cause all
messages/data to be lost so this must be performed with
care to prevent unwanted data loss.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsN183_FlushTx
To delete (flush) all unsent NMEA 0183 messages from
the NMEA 0183 transmit queue of the given Comms port
handle, use this function:

int ACommsN183_FlushTx (int Handle)

Clears the NMEA 0183 transmit queue. This will cause all
messages/data to be lost so this must be performed with
care to prevent unwanted data loss.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsN183_SetRxCallback
To setup an NMEA 0183 receive message type Callback
handling function for the given Comms port handle, use
this function:

int ACommsN183_SetRxCallback (int Handle,
 void (*pFunc)(void*), void* p)

Defines the callback function that will be called when an
NMEA 0183 message has been successfully received
and is waiting in the NMEA 0183 receive queue. This
callback should keep reading (removing) messages from
the NMEA 0183 receive queue until the queue is empty.

If messages remain in the queue when the callback
function returns, the callback function will be actioned
again immediately, so it is possible to only process one
message per function call, but this may be less efficient.

No windows should be created by the callback
handling function, as the wait loop within the Comms
thread does not process windows messages to
reduce overhead; if the callback function creates a
window, it could cause a system deadlock due to the
unprocessed message queue.

To disable the callback for this function ID, call this ‘Set’
function again with a NULL function pointer, thus stopping
any further callbacks.

This function can be called again to change the callback
to a different one in cases where different redirections are
required by the Higher Level Application (HLA).

Full callback function parameter details can be found
in the ‘API_NMEA0183’ header file.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

 Actisense®

Page 36© 2010 Active Research Limited

API_NMEA2000
This module forms the low-level NMEA 2000 Protocol
interface of the Actisense Comms Library.

These functions are useful to the Higher Level Application
(HLA) when it is required to send NMEA 2000 (via the
local NGT) to the NMEA 2000 bus, and also when it is
required to listen to various PGNs that are being sent by
other NMEA 2000 devices on the NMEA 2000 bus.

Care must be taken to ensure that the Comms port has
been opened using the same Baud rate as the local NGT
NMEA 2000 PC interface, which has a default Baud rate
of 115200.

All API_NMEA2000 functions (except for ‘Write’)
are [INTERNAL] to the PC and do not generate any
external communication messages to the attached
ARL device.

ACommsN2K_Write
To send (write) an NMEA 2000 message to the NMEA
2000 transmit queue of the given Comms port handle,
use this function:

int ACommsN2K_Write (int Handle, sN2KMsg *msg)

Adds the given NMEA 2000 message to the transmit
queue of the given Comms port handle. The queue
handler will transfer all new messages to the Windows
COM port at the next opportunity.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_BUFFER_OVERFLOW
Given handle’s queue is full - write operation had to
remove the oldest queued message first

ACommsN2K_Read
To get (read) the next received NMEA 2000 message from
the NMEA 2000 receive queue of the given Comms port
handle, use this function:

int ACommsN2K_Read (int Handle, sN2KMsg *msg)

Retrieves the next NMEA 2000 message from the receive
queue of the given Comms port handle. Typically this
function is called successively until the receive queue has
been emptied.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ES11_BUFFER_UNDERFLOW
Given handle’s queue is empty - read operation has
failed to find a message

ACommsN2K_GetRxQSize
To get the total number of NMEA 2000 messages (still to
be read) that are waiting in the NMEA 2000 receive queue
of the given Comms port handle, use this function:

int ACommsN2K_GetRxQSize (int Handle,
 size_t *BufferSize)

Returns the current size of the NMEA 2000 receive queue,
which can be used to determine if any NMEA 2000
data has been received (and requires processing) if the
‘data polling’ method is preferred by the Higher Level
Application (HLA). However, it is more normal to use the
NMEA 2000 callback functionality - as this helps keep the
CPU loading to a minimum.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

Actisense Comms SDK

Page 37© 2010 Active Research Limited

ACommsN2K_FlushRx
To delete (flush) all unread NMEA 2000 messages from
the NMEA 2000 receive queue of the given Comms port
handle, use this function:

int ACommsN2K_FlushRx (int Handle)

Clears the NMEA 2000 receive queue. This will cause all
messages/data to be lost so this must be performed with
care to prevent unwanted data loss.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsN2K_FlushTx
To delete (flush) all unsent NMEA 2000 messages from
the NMEA 2000 transmit queue of the given Comms port
handle, use this function:

int ACommsN2K_FlushTx (int Handle)

Clears the NMEA 2000 transmit queue. This will cause all
messages/data to be lost so this must be performed with
care to prevent unwanted data loss.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

ACommsN2K_SetRxCallback
To setup an NMEA 2000 receive message type Callback
handling function for the given Comms port handle, use
this function:

int ACommsN2K_SetRxCallback (int Handle,
 void (*pFunc)(void*), void* p)

Defines the callback function that will be called when an
NMEA 2000 message has been successfully received
and is waiting in the NMEA 2000 receive queue. This
callback should keep reading (removing) messages from
the NMEA 2000 receive queue until the queue is empty.

If messages remain in the queue when the callback
function returns, the callback function will be actioned
again immediately, so it is possible to only process one
message per function call, but this may be less efficient.

No windows should be created by the callback
handling function, as the wait loop within the Comms
thread does not process windows messages to
reduce overhead; if the callback function creates a
window, it could cause a system deadlock due to the
unprocessed message queue.

To disable the callback for this function ID, call this ‘Set’
function again with a NULL function pointer, thus stopping
any further callbacks.

This function can be called again to change the callback
to a different one in cases where different redirections are
required by the Higher Level Application (HLA).

Full callback function parameter details can be found
in the ‘API_NMEA2000’ header file.

If an API error occurs, this error code will be returned:

ES11_INVALID_HANDLE
Given handle does not match any active handles

 Actisense®

Page 38© 2010 Active Research Limited

Using the Actisense API
This sections details how to use the Actisense Comms
API to communicate with the NGT-1 ‘NMEA 2000 PC
Interface’ and NGW ‘NMEA 2000 to NMEA 0183’ devices.

Reference is made to the ‘ActisenseN2KDemo’ Visual
C++ project that is included as part of the SDK (in both
source file and Windows executable form).

Initialise for each use
The normal operation of the Higher Level Application
(HLA) software and the NGT is to initialise the device at
startup with the full list of Rx and Tx PGNs that are required
for operation at that time. Alternatively, the new ‘Receive
All’ mode can now be used to allow all received
NMEA 2000 PGN messages to be transferred to the
HLA software. Refer to command ACommsCommand_
SetOperatingMode for full details.

With this sequence in mind, the NGT configuration
operation has been designed to be flexible and quick:

1. Get the Rx and Tx ‘PGN Enable lists’ from the NGT
using the commands ACommsCommand_GetRxPGNList
and ACommsCommand_GetTxPGNList.

2. If the PGN Enable lists are not as currently required,
either delete the individual PGNs one at a time (by
using the commands ACommsCommand_SetRxPGN or
ACommsCommand_SetTxPGN), or delete the entire list
with the single ACommsCommand_ClearRxPGNList or
ACommsCommand_ClearTxPGNList commands.

The choice of which method to use is entirely up to the
programmer, although it can be more logical when any
more than a few PGNs need to be changed, to use the
‘Clear PGN List’ commands first.

3. Add any new Rx and Tx PGNs as required to the
PGN Enable lists, one command per PGN required,
using the commands ACommsCommand_SetRxPGN or
ACommsCommand_SetTxPGN.

4. The final operation (to make the new Enable lists
operational) is to activate the PGN Enable lists (using
command ACommsCommand_ActivatePGNEnableLists).
This command re-initialises the hardware to use the new
PGN Enable list settings.

Making the ‘Activate’ separate from the request to
change the list is important because the ‘Activate’
operation causes a small pause in the NMEA 2000 data
being sent to and from the PC - as the hardware receive/
transmit operations must be paused temporarily to allow
the necessary register changes to be performed.

For this reason, the HLA will not want to action this
operation after every single PGN Enable list change.

5. Lastly, if it is required that these PGN Enable list
changes should remain set after the NGT-1 loses power
(unplugged from the USB port), then the ‘Activate’
command must be followed with the ACommsCommand_
CommitToEEPROM command. This command will copy
/ commit the new Enable lists to the nonvolatile memory
inside the target device, where it can be read from at all
future device startups.

However, many setups do to not require the use of the
‘Commit’ command - as allowing the Enable List settings
to be changed purely for the current session (RAM only),
allows a quick reset to be performed to get the NGT back
to the default list (held in EEPROM).

The idea of different ‘functioning modes’ has been proven
to be very useful to software engineers using the Actisense
Comms API. Each ‘functioning mode’ has its own group
of PGNs that are required - and so its own ‘Enable lists’.

By being able to very quickly swap between these
different ‘Enable lists’, the behaviour of the NGT can
be fine-tuned for each ‘functioning mode’, helping the
software designer control/reduce the PGN message
decode overheads.

This feature is particularly useful when the HLA program
needs to operate in different ‘guises’: configuration (in the
factory), or installation of the device (on the vessel) - both
of which can require different PGNs from the normal day-
to-day functional mode.

Actisense Comms SDK

Page 39© 2010 Active Research Limited

Rx PGN Enable list
When required to add an Rx PGN to the ‘Rx PGN Enable
list’, the Mask value associated with the PGN will normally
be kept to the ‘Use Defaults’ value. However, there are
special situations when a different setting is useful.

The PGN and Mask are effectively combined together by
the hardware to create the required response. Using the
‘Water Depth’ PGN as an example:

Water Depth PGN (128267) 1F50B xx hex
Default Mask 3FFFF 00 hex

All bits in the Mask that are set to ‘1’ indicate that a
received PGN must match that bit exactly to be accepted.
Any bits set to ‘0’ indicates that the corresponding bit in
the PGN is ignored (can be either ‘0’ or ‘1’) - shown as an
‘x’ above.

The above example defines that the unique PGN of 1F50B
(hex) must be received for it to pass the PGN & Mask
filter. Any other PGNs will fail - as their bits will differ in
the ‘active’ bits set in the Mask. The Mask does however
allow this PGN to be received from any ‘Source Address’
(indicated by the least significant 8 bits being ‘0’).

If the Mask was instead set to 3FF00 00 (hex):

Water Depth PGN (128267) 1F5xx xx hex
Non-default Mask 3FF00 00 hex

This allows (in theory) all PGNs from 1F500 to 1F5FF to be
accepted, however, this is cannot be allowed in practice
because this PGN-Mask combination would then allow
both single-packet and fast-packet messages in through
the same filter - which is not possible (and so is blocked
by the NGT firmware).

This Mask (3FF0000 hex) can however be used for the
two blocks of 256 Proprietary PGNs: 65280 to 65535
(0FF00 to 0FFFF - all single-packet PGNs), and 130816 to
131071 (1FF00 to 1FFFF - all fast-packet PGNs).

It is acceptable to set up a single PGN-Mask combination
to accept / receive all 256 Proprietary PGNs of a block -
as all 256 messages are of the same message type. This
is the normal process when a large group of proprietary
PGNs are required:

All Proprietary PGNs (65280 to 65535) 0FF00 00 hex
 Mask 3FF00 00 hex

All Proprietary PGNs (130816 to 131071) 1FF00 00 hex
 Mask 3FF00 00 hex

The 7 PGNs defined between 59392 to 61184 and 126208
to 126720 are special ‘Core Control’ PGNs:

• ISO Acknowledge PGN (59392/0E800)
• ISO Request PGN (59904/0EA00)
• ISO Address Claim PGN (60928 / 0EE00)
• N2K Proprietary Manufacturer PGN (61184/0EF00)
• N2K Rqst/Ack/Cmd Group PGN (126208/01ED00)
• N2K Tx & Rx PGN list PGN (126464/01EE00)
• N2K Proprietary Manufacturer PGN (126720/01EF00)

These PGNs are always received and processed by the
NGT. When they are added to the ‘Rx PGN Enable list’, the
‘copy to the PC’ operation is enabled. In this way, these
‘Core Control’ PGNs are classed as Rx ‘Virtual’ PGN’s
(as they are not used to set up the ‘Real’ hardware). This
means they are effectively free - as they do not use up
one of the 28 PGN ‘slots’.

In summary: If the total number of required Rx PGNs
required at any one time fits in to the maximum of 28 ‘slots’
(ignoring the 7 core PGNs that are always available), then
it is normal to set up each Proprietary PGN separately with
its own PGN-Mask combination (using the ‘Use Default’
mask option).

However, if more than 28 PGN ‘slots’ are required (at any
one time), again ignoring the 7 core PGNs that are always
available, the Proprietary PGNs can be grouped together
in to the two groups detailed above using the ‘Match
PDU Format’ mask option (that only matches on the PDU
Format (and page) bits of the message.

In this way, all 512 Proprietary PGNs only occupy 2 PGN
’slots’ in the hardware, leaving 26 remaining ‘slots’ for the
standard PGNs.

The 2 additional ‘Core Control’ PGNs are a special case
and do not exist outside of the NMEA 2000 network - they
are used purely to transfer other PGN messages using
the ISO Transport Protocol. These two PGNs are handled
transparently by the NGT-1 and can be ignored:

• ISO Transport Protocol (Data) PGN (60160/0EB00)
• ISO Transport Protocol (Man) PGN (60416/0EC00)

The NGT-1 comes with a factory default list of Rx and Tx
PGNs - its ‘PGN Enable Lists’. These lists determine
what PGNs are required to be transferred from the NMEA
2000 bus to the PC (Rx) and what PGNs are required to
be sent from the PC (Tx).

Normally the HLA (PC) software will adjust these Enable
lists to suit its current PGN requirements, and once set,
can also be remembered for the next session using the
ACommsCommand_CommitToEEPROM command.

 Actisense®

Page 40© 2010 Active Research Limited

Tx PGN timings
Taking the PGN 127488 (Engine Parameters, rapid) as an
example, this has a default ‘Transmit (Tx) rate / interval’ of
100 milliseconds.

If this rate / interval has either been set using the value
‘100’ or by using the ‘Use Default’ value, when added to
the ‘Tx PGN Enable list’, the NGT will limit this PGN to a
maximum transmit speed of once per 100 milliseconds. In
doing so, the NGT satisfies the NMEA 2000 specification
of maintaining the defined Tx rate for each PGN.

The ‘Timeout’ value for a transmit PGN has now been
disabled and can be ignored. This is due to a change
in the NMEA 2000 specification regarding the minimum
PGN transmit speed. The new requirement states that
there should not be a minimum transmit speed, hence
there is no longer a need for the ‘Timeout’ value.

Therefore, this new rule states that if no new PGN (127488)
message is received from the PC (by the NGT) within the
required 100 milliseconds Tx rate interval, the NGT will no
longer generate a copy message, and the Tx rate will be
allowed to drop below the defined Tx rate.

Conversely, if the PC starts sending the PGN (127488) to
the NGT-1 faster than the defined 100 millisecond interval,
the gateway must limit the Tx rate of this PGN on the NMEA
2000 bus to the defined interval of 100 milliseconds. A Tx
PGN will never be set by the NGT gateway faster than
the stipulated Tx rate.

To help visualise this behaviour, it can be useful to
temporarily add an ‘ID’ value to a PGN message data field
sent to the NGT. For example, if the “Engine Speed” value
was replaced by a simulated speed that increments by
a single value each time it was transmitted from the PC,
each message will be unique and traceable when viewed
on the NMEA 2000 bus.

In this way, the NGT Tx rate interval behaviour will become
visible and understandable to the software developer.

API & Device Error Codes
There is a major difference between an API function call
that changes something in the API, and an API function
call that requests information from or changes in the NGT-
1/NGW-1 (or other Actisense device):

1. API function calls that changes something in the API
can immediately return a meaningful error code because
it can immediately determine if something is wrong with
the request itself. This is true of the ACommsCreate and
ACommsOpen functions: they are changing settings in
the API itself, so they can immediately flag up an error.

2. API function calls that requests information from or
changes in the device cannot always return immediately
with a meaningful error code because it cannot always
know if the request is valid - only the device can do that. If
an invalid handle was passed to the function, then that is
within its power to flag up an error immediately, however,
it cannot understand if the request message contents
(to be sent to the device) are valid - that is the job of the
device itself. All ACommsCommand functions fall in to this
category.

Therefore, all ACommsCommand functions may well
return a “No error” status - this informs the Higher Level
Application (HLA) that the request was sent successfully,
it does not however indicate if the request that was sent
was actually valid.

The answer to the second question is supplied as
a response message from the device itself and it is
that response message that must be read in order to
understand if there was an error or not with the API
Command request.

Reset/Re-initialisation sources
There are three ways a device can be re-initialised / reset.
A re-initialisation process will occur for any one of these:

1. A power reset of the device (unplugging an ISO
gateway variant from the NMEA 2000 bus, or unplugging
a USB gateway variant from the PC).

2. Sending the API ACommsCommand_Reboot or
ACommsCommand_ReInitMainApp commands.

3. Sending a command that must force a re-initialisation
to complete the request. Currently this only applies to:
ACommsCommand_SetOperatingMode and
ACommsCommand_SetDefaultPGNEnableList

Therefore, simply closing and reopening the Comm port
to a new Baud rate will not reset the device at all.

Actisense Comms SDK

Page 41© 2010 Active Research Limited

Application thread restrictions
There are no threading restrictions placed on the
programmer, beyond those of standard safe coding
practices. All API communication commands are
protected by a critical section, so that only one thread
can gain access to important resources at any one time.
The second thread will wait for the first to complete its
operation before being given access.

For example, in theory any number of threads could be
used to call ACommsN2K_Write and ACommsN2K_Read,
there is no need to limit this to a single thread, however,
normal practices will normally limit this to a maximum of
two threads (1 Write and 1 Read).

Standard safe programming practices do however dictate
that the same thread that calls ACommsOpen, should
also call ACommsClose, but only after all open threads
that are linked to the port about to be closed, are first
destroyed by calling ACommsDecode_SetCallback with a
NULL pointer for that callback function.

Application-API thread efficiency
The API uses the overlapped method in the COM port Tx
and Rx threads, so in theory there shouldn’t be too much
overhead - as the Comms threads suspend themselves
until data arrives to be processed.

Testing this on a four year old laptop (Windows XP,
Pentium-M, 1900 MHz), the Actisense Comms library only
used approximately 1% of the CPU utilisation, even with a
large data load flowing through the Comms port (115200
Baud at 40+% load).

Automatically detecting an installed
Actisense device’s port
Detecting an Actisense device’s port is really easy:

1. The API function ACommsEnumerateSerialPorts
returns a list of the enumerated serial ports available
to the system.

2. The ‘really useful’ name of each port is obtained by
calling the ACommsEnumerateSerialPortsGetName
API function.

3. Performing a quick search through the ‘port
descriptions name list’ for the “Actisense NGT” or other
device text will result in the port description strings and
port numbers of each and every Actisense device.

‘Receive All Transfer’ Operating Mode
A new operating mode that offers to transfer all NMEA
2000 messages to the HLA software. The HLA can easily
send the single ACommsCommand_SetOperatingMode
command to enable this ‘Receive All Transfer’ operating
mode, which is perfect for diagnostic or logging software
that requires access to all NMEA 2000 messages currently
on the network.

This operating mode change is a session only feature so
that the NGT-1 will reset back to using the built-in Rx PGN
List when a power or command reset occurs. The Tx PGN
List is unaffected by this new mode, and operates exactly
as it did before.

It is important to note that use of the ‘Receive All
Transfer’ operating mode is not recommended when
the total number of PGNs that the HLA software
requires access to will fit in to the Rx PGN List (28
Real and 7 Virtual PGNs).

Unnecessary use of the ‘Receive All Transfer’ mode will
place an extra load on both the NGT-1 microcontroller and
more importantly, on the HLA software, to process the
greatly increased volume of NMEA 2000 PGN messages.

Proprietary ‘P-code’ messages
The ‘Rx & Tx PGN Enable lists’ are set up to match the
API user requirements to transfer data from each input to
its opposite output on the NGT. That is: Serial -> NMEA
2000, and NMEA 2000 -> Serial.

However, Manufacturer Proprietary messages (such as
the ‘System Status’ message sent once per second by
an NGT / NGW) are ‘internally generated’ messages: they
are not triggered from any data coming in to the NGT /
NGW, and so are not controlled (enabled and disabled)
by changing the ‘Tx PGN Enable list’.

On the NMEA 2000 port, all the Actisense Proprietary
messages from an NGT or NGW via the NMEA 2000 bus
use the PGN 126720.

The serial port on the NGT or NGW can also be configured
to send the same Actisense Proprietary messages using
the either the BST or NMEA 0183 Protocol respectively.

These Proprietary-Codes can be turned on and off via the
ACommsCommand_SetPortPCodes API command:

The first message byte relates to the CAN (NMEA
2000) port, and the second to the Serial / USB port.

The default is to have the serial port P-codes ON,
and the CAN (NMEA 2000) OFF: 0 and 1.

 Actisense®

Page 42© 2010 Active Research Limited

Setting up Callbacks
A full example of the suggested way to create and setup
the necessary callback functions required by the API is
given in the ‘ActisenseN2KDemo’ source code.

Below is a short description of the procedure used to
create the ‘ActisenseN2KDemo’ source code using the
Visual C++ environment:

1. Create a Class to handle the data
‘N2KViewForm’ module handles the reception and
corresponding display of the NMEA 2000 data:

class CN2KViewForm : public CFormView

The header file details all the ‘protected’ and ‘public’
variables and functions.

2. Create a static callback function of the Class
The callback function that is called by the Actisense
Comms dll must be a static member of the class.

It can be useful to prefix all these callback functions
with the name “Callback” so that they can be easily
identified as such:

static void CallbackFuncN2K (void* p);

The only allowed function parameter of the callback
function is a void pointer, shown as “(void* p)“:

void CallbackFuncN2K (void* p)

3. Create the content of the callback function
The void pointer is used to pass in the system “this”
variable pointer so the static callback function can gain
access to the non-static members of the class. This
operation requires the re-casting of the void pointer
back to the Class pointer:

CN2KViewForm* pView =
 static_cast<CN2KViewForm*>(p)

To retrieve all unread NMEA 2000 messages from the
receive buffer, a do-while loop is created to keep calling
the ‘API Read’ function until the queue is empty:

do { } while (size && !Error);

Call the API to retrieve the next NMEA 2000 message:

Error = ACommsN2K_Read (pView->ACommsHandle,
 &msg)

Store the read message in the Classes storage:

pView->N2KStore.AddMessage(msg)

Ask the API how many unread messages are still in the
NMEA 2000 receive queue (so the do-while loop can
be aborted if none remain):

ACommsN2K_GetRxQSize (pView->ACommsHandle,
 &size)

Finally, cause a refresh / redraw of the GUI to allow the
newly received data to be displayed to the user:

int WM_REDRAW_LIST_ITEMS =
 RegisterWindowMessage (“REDRAW_LIST_ITEMS”)

BOOL Result = pView->PostMessage (WM_REDRAW_
 LIST_ITEMS, 0, 0)

4. Create a ‘Set/Clear callback’ function of the Class
To allow quick ‘setting’ and ‘clearing’ of the callback
function, create a simple function to encapsulate this
operation. This has the major benefit of separating
the module that ‘sets’ and ‘clears’ the callback from
the class module that knows what callback function to
setup of for that data type:

void SetOrClearDataCallbacks (bool Set)

If requested to setup a callback for this data type, call
the ‘SetRxCallback’ function with the Class known
callback function:

ACommsN2K_SetRxCallback (ACommsHandle,
 CallbackFuncN2K, this)

Alternatively if the callback is required to be disabled,
call the ‘SetRxCallback with a NULL pointer (the void
pointer is ignored by the ‘Set’ function under this
condition, and so its value is not important):

ACommsN2K_SetRxCallback (ACommsHandle,
 NULL, NULL)

Actisense Comms SDK

Page 43© 2010 Active Research Limited

Changing the device’s baud rate
Every Actisense device connected via its serial or USB
port talks to the PC initially using its ‘Port baud rate’. This
default baud rate is stored permanently in the devices
EEPROM and is read during start-up.

The EEPROM setting for ‘Port baud rate’ can be set using
the ACommsCommand_SetPortBaudCodes command,
however, this change will not be actioned / used until the
device is reset.

The baud rate every Actisense device is currently using
on its serial port is called the ‘Hardware baud rate’.
This rate can be changed without affecting the ‘Port
baud rate’ (stored in EEPROM that the device will adopt
when a reset occurs) by using the ACommsCommand_
SetHardwareBaudCodes command.

As an example, the Actisense NGT-1 will normally be set
up to work at 115200 or 230400 baud. This baud rate
is fast enough to communicate efficiently and quickly
with the host PC. However, some products, such as an
Actisense NGW-1 gateway, or NDC-4 multiplexer may
require to talk at 4800 baud. This communication rate is
the correct rate to talk to NMEA 0183 products, but slows
down communication with PC (configuration) software.

To improve the speed of configuration, all Actisense
devices support the ‘Hardware baud rate’ method of
allowing the PC software to temporarily change a devices
communication speed until the end of that ‘session’.

To change the devices ‘Hardware baud rate’:

1. Use ACommsCommand_SetHardwareBaudCodes
command to send the baud rate of each port in the
attached device. An NGT-1 or NGW-1 gateway has
two communication ports inside: the CAN bus / NMEA
2000 port, and the Serial / NMEA 0183 port.

Therefore, both baud codes must be sent, and in the
correct order: ‘CAN’ first, ‘Serial’ second. Any other
number of baud codes will result in the relevant error
code being returned.

2. The device will send back its response message at
the original baud rate. This allows the PC software to
understand if the baud rate change was successful.

The PC software must check the error code returned
in the command respond message. If no error was
indicated, the device will automatically start using the
new baud rate, and the PC software must change it’s
own baud rate to maintain communications.

API source code (C, C++, C#)?
The Actisense Comms API source code is written in
Visual C++ (2008), however, the programming interface
(API) itself is written in C to increase the compatibility with
software vendor’s products. The Actisense Comms API is
currently provided as a dll file that allows easy and quick
inclusion in to existing software.

However, under a ‘Non-Disclosure Agreement’ (NDA)
Actisense can now offer access to a low-level alternative
to the dll - primarily for non-PC based systems.

There are a good number of companies currently using
the Actisense Comms dll without problem, and it is
proving to be a reliable and quick solution to implement
and more importantly, maintain.

ActisenseComms dll C# ‘wrapper’
The new ActisenseComms .Net C# wrapper Test Project
has recently been released on the Actisense website. This
source code example project gives the .Net C# software
developer all that they need to easily access the Actisense
Comms dll in their C# environment.

The working Visual Studio test project is a perfect starting
point that allows very quick integration of the Actisense
Comms API in to an existing software package, allowing
full debug to help the developer learn how it’s achieved.

Please contact Actisense for details.

 Actisense®

Page 44© 2010 Active Research Limited

NMEA 2000 PGN options
Any NMEA 2000 PGN that has been declared in the NMEA
2000 specification, which includes all of the Proprietary
PGN’s can be sent and/or received by the NGT-1.

The block of 256 single-packet (non-addressable)
proprietary PGNs (0x0FF00 to 0x0FFFF), the block of 256
fast-packet (non-addressable) proprietary PGNs (0x1FF00
and 0x1FFFF), plus the two addressable proprietary PGNs
(0x0EF00 (single-packet) and 0x1EF00 (fast-packet)) are
able to be sent and received using the NGT-1.

The current NMEA 2000 library supports all PGNs in the
v1.300 revision of the specification.

NMEA 2000 certification
The Actisense NGT-1 product is NMEA 2000 certified,
furthermore, it will be certified as an ‘Intelligent Gateway’
/ ‘Third Party Gateway’ by the NMEA.

What this offers to the software developer is the ability to
also get their software NMEA 2000 certified (when used
with the NGT-1) at the highly reduced cost of $100 (plus
a nominal cost for Actisense to perform the required
certification tests and send them to the NMEA). This new
method allows smaller developers to get in on the NMEA
2000 action easier and much cheaper.

The cost of performing this certification yourself, including
registering with the NMEA, buying the complete NMEA
2000 documentation, the NMEA 2000 certification tool, a
Manufacturer code and a Product code, plus completing
the certification process totals a massive $9150!

‘Intelligent Gateway’ and
‘Third Party Gateway’ (TPG)
The NGT-1 performs all NMEA 2000 network operations
and will not allow illegal operations to be performed on
the NMEA 2000 bus. It sanitises all requests made of it by
the PC so that only legal messages are sent to the NMEA
2000 bus.

This ability is why the PC software can be NMEA 2000
certified for use with the NGT-1 at such a reduced cost
- because the NMEA understands that the PC software
cannot impair the NMEA 2000 bus.

The NGT-1 will be certified as a “Third Party Gateway” in
2010, which will allow each PC software program that uses
the NGT-1 as its NMEA 2000 interface to subsequently be
NMEA 2000 certified by Actisense and the NMEA.

NMEA 2000 Address Claiming
The NGT-1 takes care of all NMEA 2000 network issues
such as ‘Address Claiming’. That is the only way that
the ‘Intelligent Gateway’ can hope to work correctly -
as allowing the PC software to perform this operation will
incur response delays and perhaps incorrect operation
if not handled correctly. This removes this requirement
from the HLA and as a result, the software developer
need not even know how addresses are claimed or even
purchase the ‘Address Claim’ NMEA 2000 document.

Converting NMEA 2000 to NMEA 0183
The NGT-1 does not currently perform any conversion
on the NMEA 2000 messages received, other than to
transfer them to the PC and the software running on it.
This results in no loss of data resolution that can occur
when converting between NMEA 2000 and NMEA 0183.

The requirement for compatibility with legacy NMEA 0183
software via USB is handled perfectly by the Actisense
NGW-1-USB product. However, Actisense has considered
this option, and does plan to add this extra feature in a
future dll upgrade, which would remove the need for the
current NGW-1-USB.

Full (2500 volts) galvanic isolation
The NMEA 2000 specification requires a fully isolated
interface to the NMEA 2000 bus. By using the NMEA
2000 network power and opto-isolation, the NGT-1
maintains the integrity of the NMEA 2000 bus and meets
the specification requirements by offering 2500 volts of
galvanic isolation in both directions.

Cost effective interface
The NGT-1 has been designed with quality components to
maintain our reputation for high quality products.

However, an eye was also kept on the end customer
cost, to prevent it from becoming too high. Actisense is
conscious of making NMEA 2000 attractive to the end
customer and plans to reduce the cost of the NGT-1
further when volume allows.

Actisense Comms SDK

Page 45© 2010 Active Research Limited

 Actisense®

Page 46© 2010 Active Research Limited

Actisense Comms SDK

Page 47© 2010 Active Research Limited

 Actisense®

Page 48© 2010 Active Research Limited

Active Research Limited
5, Wessex Trade Centre
Ringwood Road
Poole
Dorset
UK
BH12 3PF

Telephone: 01202 746682 (International : +44 1202 746682)
Fax: 01202 746683 (International : +44 1202 746683)

Actisense on the Web: For advice, support and product details

E-mail: support@actisense.com
Website: www.actisense.com

“Actisense” is a registered trademark of Active Research Limited.

Company Information

mailto:support@actisense.com
http://www.actisense.com

	Important Notices
	Foreword
	Introduction
	General features
	C-code function interface
	Multi-threaded bi-directional interface
	Converts from the Actisense proprietary message format (BST)
	Example programs showing usage

	API modules
	API_AComms
	ACommsCreate
	ACommsDestroy
	ACommsDestroyAll
	ACommsOpen
	ACommsClose
	ACommsGetPortNumber
	ACommsGetPortBaudrate
	ACommsEnumerateSerialPorts
	ACommsEnumerateSerialPortsGetName
	ACommsGetRxLoading
	ACommsGetTxLoading

	API_BST
	ACommsBST_Write
	ACommsBST_Read
	ACommsBST_GetRxQSize
	ACommsBST_FlushRx
	ACommsBST_FlushTx
	ACommsBST_SetRxCallback

	API_Command
	ACommsCommand_GetStream
	ACommsCommand_SetStream
	ACommsCommand_GetN2KAddress
	ACommsCommand_SetN2KAddress
	ACommsCommand_Reboot
	ACommsCommand_ReInitMainApp
	ACommsCommand_CommitToEEPROM
	ACommsCommand_CommitToFlash
	ACommsCommand_GetHardwareInfo
	ACommsCommand_GetOperatingMode
	ACommsCommand_SetOperatingMode
	ACommsCommand_GetHardwareBaudCodes
	ACommsCommand_SetHardwareBaudCodes
	ACommsCommand_GetPortBaudCodes
	ACommsCommand_SetPortBaudCodes
	ACommsCommand_GetPortPCodes
	ACommsCommand_SetPortPCodes
	ACommsCommand_GetPortDupDelete
	ACommsCommand_SetPortDupDelete
	ACommsCommand_GetTotalTime
	ACommsCommand_SetTotalTime
	ACommsCommand_GetProductInfoN2K
	ACommsCommand_GetCanConfig
	ACommsCommand_SetCanConfig
	ACommsCommand_SetCanInfoField1
	ACommsCommand_SetCanInfoField2
	ACommsCommand_SetCanInfoField3
	ACommsCommand_GetCanInfoField1
	ACommsCommand_GetCanInfoField2
	ACommsCommand_GetCanInfoField3
	ACommsCommand_SetRxPGN
	ACommsCommand_SetRxPGNEx
	ACommsCommand_GetRxPGN
	ACommsCommand_SetTxPGN
	ACommsCommand_SetTxPGNEx
	ACommsCommand_GetTxPGN
	ACommsCommand_GetRxPGNList
	ACommsCommand_GetTxPGNList
	ACommsCommand_ClearPGNList
	ACommsCommand_ClearRxPGNList
	ACommsCommand_ClearTxPGNList
	ACommsCommand_ActivatePGNEnableLists
	ACommsCommand_SetDefaultPGNEnableList
	ACommsCommand_GetParamsPGNEnableLists

	API_CommsLog
	ACommsLog_Enable

	API_Decode
	ACommsDecode_GetAge
	ACommsDecode_GetDataTypeName
	ACommsDecode_GetUARTBaudCodeName
	ACommsDecode_GetCANBaudCodeName
	ACommsDecode_GetModelIDName
	ACommsDecode_SetCallback
	ACommsDecode_SetCallbackGroup
	ACommsDecode_GetTag
	ACommsDecode_GetHardwareInfo
	ACommsDecode_GetOperatingMode
	ACommsDecode_GetHardwareBaudCodes
	ACommsDecode_GetPortBaudCodes
	ACommsDecode_GetPortPCodes
	ACommsDecode_GetPortDupDelete
	ACommsDecode_GetTotalTime
	ACommsDecode_GetProductInfoN2K
	ACommsDecode_GetCanConfig
	ACommsDecode_GetCanInfoField1-3
	ACommsDecode_GetRxPGN
	ACommsDecode_GetTxPGN
	ACommsDecode_GetRxPGNList
	ACommsDecode_GetTxPGNList
	ACommsDecode_GetParamsPGNEnableLists
	ACommsDecode_GetStartupStatus
	ACommsDecode_GetSystemStatus
	ACommsDecode_GetDbgTimeProfiler

	API_NMEA0183
	ACommsN183_Write
	ACommsN183_Read
	ACommsN183_FlushRx
	ACommsN183_FlushTx
	ACommsN183_SetRxCallback

	API_NMEA2000
	ACommsN2K_Write
	ACommsN2K_Read
	ACommsN2K_GetRxQSize
	ACommsN2K_FlushRx
	ACommsN2K_FlushTx
	ACommsN2K_SetRxCallback

	Using the Actisense API
	Initialise for each use
	Rx PGN Enable list
	Tx PGN timings
	API & Device Error Codes
	Reset/Re-initialisation sources
	Application thread restrictions
	Application-API thread efficiency
	Automatically detecting an installed Actisense device’s port
	‘Receive All Transfer’ Operating Mode
	Proprietary ‘P-code’ messages
	Setting up Callbacks
	Changing the device’s baud rate
	API source code (C, C++, C#)?
	ActisenseComms dll C# ‘wrapper’
	NMEA 2000 PGN options
	NMEA 2000 certification
	‘Intelligent Gateway’ and
	‘Third Party Gateway’ (TPG)
	NMEA 2000 Address Claiming
	Converting NMEA 2000 to NMEA 0183
	Full (2500 volts) galvanic isolation
	Cost effective interface

	Company Information

